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SUMMARY 

In this work we deal with doubly decorated Ising-Heisenberg models on planar lattices. Applying the generalized 

decoration-iteration transformation we obtain exact results for the antiferromagnetic version of the model. The existence of 

a new quantum dimerized phase is predicted and its physical properties are studied and analyzed. Particular attention has 

been paid to the investigation of the phase boundaries, pair-correlation functions and specific heat. A possible application of 

the present work to some molecular magnets is also drawn.   
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1. INTRODUCTION 

 

The low-dimensional magnetic materials have 

attracted considerable experimental and theoretical 

interest since Haldane’s pioneering work [1] that 

pointed out the difference between the integer spin 

Heisenberg quantum antiferromagnets (QHA) and 

half integer ones. Among the most fascinating 

problems being of current research interest in this 

field one should mention: the quantum phase 

transitions [2], spin-Peierls instabilities [3], quantum 

entanglement [4], magnetization plateau [5] and so 

on.  In addition to the above mentioned topics, the 

two-dimensional spin-1/2 QHA have been also very 

intensively studied in connection with possible 

applications to the layered perovskites and cooper-

oxide compounds. In fact, in the insulating cuprates 

appears Cu-O-Cu superexchange coupling that is 

responsible for the antiferromagnetic ordering  of the 

cooper spins in the CuO2 layers. The existence of the 

superconducting phase is then associated with  

quantum fluctuations [6] or with frustrations of the 

exchange interactions caused by doping. [7].  

It is worth noticing that despite of extensive 

studies only few exact results have been obtained   

in this research field so far [8]. This principal 

mathematical intractability is closely related to the 

many-body effects, as well as, to the non-

commutability of the spin operators entering the 

relevant  Heisenberg Hamiltonian. The main purpose 

of  this work is to introduce a wide class of exactly 

solvable antiferromagnetic two-dimensional models 

that enable to study interesting quantum phenomena. 

A possible application of the presented models to 

some realistic molecular-based magnets will be also 

drawn.  The paper is organized as follows. In Sec.2 

we briefly review the main points of the applied 

method. The  numerical results for the ground state, 

phase diagrams, pair-correlation functions and 

specific heat are discussed in Sec. 3 and  concluding 

remarks are summarized  in Sec. 4. 

 

2.  FORMULATION 

 

In this work we will study a spin-1/2 doubly 

decorated planar Ising-Heisenberg models described 

by the Hamiltonian  
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where ),,( zyxSk 
  and 

z

l  denote the compo-

nents of the standard spin–1/2 operators and the 

summations are carried out over the nearest 

neighbors only.  The  exchange parameters J and J1 

couple two  Heisenberg atoms or neighboring pairs 

consisting of Ising and Heisenberg atoms, 

respectively. Moreover, we will assume that both 

interactions are positive i.e. supporting the  

antiferromagnetic ordering. Finally, the parameter 
  reflects the anisotropy in the interaction between 

Heisenberg atoms. In fact, by changing the strength 

 

 

 

Fig. 1  Doubly decorated Ising-Heisenberg model 

on the square lattice. Black circles denote the 

Ising atoms and the gray the Heisenberg ones. 
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of   one can control the behaviour of the system   

between the Ising-regime (or the easy-axis anisotro-

py (  <1)) and the XY-regime (or the easy-plane 

anisotropy (  >1)).  

As usual, the quantity of our primary interest is 

the magnetic partition function defined by   

 

.)(expTr HZ                                               (2) 

 

The basic idea of our calculation is to find a relation 

between the partition function of our system and that 

of  the  standard spin-1/2 Ising model on the relevant 

undecorated lattice. For this purpose, we rewrite the 

Hamiltonian (1) in terms of  the site Hamiltonians. 

Namely, 
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Now, substituting  this relation into Eq. (2) and 

taking into account the commutability of the site 

Hamiltonians   )if0,( lkHH lk  , one can easily 

express the partition function in the form  
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where TkB1  and q is the coordination number 

of the undecorated lattice and N represents the total 

number of atoms on the original lattice. The symbol 

 Tr denotes the trace over all Ising spin variables 

and  
21

TrTr
kk SS means the trace over  a couple of the 

Heisenberg atoms on the  kth  bond .  

In order to proceed further, we introduce the 

following  generalized decoration-iteration transfor-

mation         
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that enables one to rewrite equation (5) as follows 
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Here, 0Z  represents the partition function of the 

standard spin-1/2 Ising model on the relevant 

undecorated lattice and the unknown parameters 

A and R can be straightforwardly expressed as 

a function of 1,, JJ  and  . Namely, 

 

   

.ln2

,2exp2

2

1

2/1

21


















W

W
R

WWJA





                        (8) 

 

where we have introduced the functions 1W  and 2W  
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Equations (7)-(9) represent a complete mathema-

tical  correspondence between the model under in-

vestigation and the relevant exactly solvable spin-

1/2 Ising model on the original (undecorated) lattice. 

It is worthy to note that from equations (7)-(9) one 

can, in principle, derive relations for all physical 

quantities of interest applying standard thermodyna-

mic equations. However, this approach leads in 

practice to very lengthy and tedious calculations. 

Fortunately,  this problem can be avoided using the 

following exact equations  
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where  f1 represents a function depending exclusi-

vely on Ising-spin variables and  f2 denotes a func-

tion which depends on the spins operators of the kth 

bond. The superscripts  zyx ,,,   denote the 

components of the spin operators and finally the 

symbol 
d

...  and 
0

...  represent the standard 

ensemble average related to the decorated and ori-

ginal model, respectively. 

    Now, applying one of the standard methods (see 

for example [9]), one easily derives  from equations  

(10) relatively simple expressions for the pair-

correlation functions. Namely,     

 

    ,28

,

2121

2121

0
2121

KKqKK

SSSSq

q

zz

ii

d

y

k

y

k
d

x

k

x

k

xx

hh

z

k

z

k
d

z

k

z

k

zz

ii





 

  



3   Acta Electrotechnica et Informatica  No. 1, Vol. 1, 2001 

 

   

 

    (11),28

2

,441

6565

2211

434321

KKqKK

SSq

KKqKKSSq

zz

ii

d

z

k

z

k

z

k

z

k

zz

ih

zz

ii
d

z

k

z

k

zz

hh







  

 

where  the superscripts specify the space-direction, 

the subscripts identify the type of  the atoms and  

0
21

z

k

z

k  represents the nearest-neighbor correla-

tion on the relevant undecorated lattice which is well 

known. The coefficients in equation (11) depend on 

the parameters of the Hamiltonian and temperature, 

and they are given by  
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With the help of the correlation functions we can 

express the internal energy of the system in the 

form:  
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and then we can easily also calculate the specific 

heat from the relation 













T

U
C . 

   

3. NUMERICAL RESULTS AND DISCUSSION 

 

In this part we will discuss the most interesting 

findings for the Ising-Heisenberg model on the 

doubly decorated square lattice which entirely  

illustrates  the behaviour of  the considered doubly 

decorated models.  

 In  order to understand the ground-state proper-

ties of the system, we have analyzed the relevant 

pair-correlation functions that are for 0T given by 
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As one can expect, we have found that  the  pairs 

consisting  of two Heisenberg atoms, as well as, 

those consisting  of two Ising atoms align antiparalel  

(i. e. the relevant correlation functions take the 

maximum possible value).  Surprisingly, excepting 

this trivial observation one  also finds that the corre-

lation between Ising and Heisenberg atoms does not 

take its maximum value ( 25.0zz

ihq ) for .0   

Moreover, there always exists a short-range order in 

the xy-plane since 0
yy

hh

xx

hh qq . These interesting 

results are depicted in Fig. 2 for the case of 

.0.11 JJ In fact, such a behavior  of the system  is 

closely related to the Heisenberg uncertainty 

principle and it leads to the existence of an unusual 

quantum phase that will be called in this work as 

a quantum dimerized phase. It follows from our 

calculation that this phase is the only stable phase  at 

the ground state and it can be characterized as 

the quantum phase in which two different 

contributions are combined. The first one is 

originated by  the spins of the Ising sublattice 

exhibiting perfect antiferromagnetic order and the 

second one coming from the Heiseberg atoms that 

apparently create antiferromagnetic dimers on the 

bonds of  the original lattice. However, the most 

fascinating finding is the fact that the above-

mentioned dimers are oriented randomly with 

respect to their Ising nearest neighbors. 

Consequently, the quantum dimerized  phase is 

partly disordered and it may exhibit some different 

features in comparison with the ordinary long-range 

ordered phases. 

Now, let us proceed to investigate the behavior of 

the system at finite temperatures. Before discussing 

numerical results, it is useful to note that the phase 

diagrams of our decorated system can by simply 

calculated  after substituting the critical temperature 

of the original lattice (  21ln2 Rc ) into 

equation (8).  

At first, we have depicted  in Fig. 3 the phase 

boundaries in the T  plane for different  values 

of  the exchange parameter 1J . As one can see, in 

the case of the weak exchange parameter 1J , the 

critical temperature monotonically decreases from 
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Fig. 2  The ground-state pair-correlation functions 

versus anisotropy 
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its pure Ising limit at 0  and tends to zero for 

 . On the other hand, if the exchange 

parameter 
1J   becomes strong enough, the critical 

temperature at first exhibits a broad maximum  and 

then again goes to zero  (see the case 0.31 JJ ). 

These characteristic dependences appear due to the 

competitive influences of the exchange interactions 

1, JJ , anisotropy parameter   and  temperature.  In 

order to understand more deeply the nature of the 

phase transition between the dimerized and 

disordered phase, we have studied the temperature 

variation of the pair-correlation functions,  as well 

as, the thermal dependences of the specific heat. 

In Fig. 4, there are presented the temperature 

dependences of the pair-correlation functions 

between two Heisenberg-type atoms in the z-

direction (dashed lines) together with those in the x-

direction (solid lines) for some typical sets of 

parameters. Moreover, in Fig. 5 we show the same 

dependences (but only in the z-direction) also for the 

pairs of Ising spins and those consisting of one Ising 

and one Heisenberg atoms.  As one can see, in 

agreement with the ground state analysis the 

correlation functions 
zz

iiq and 
zz

hhq  take at 0T  

always the maximum possible value (–0.25) and 

then monotonically decrease with the temperature. 

Contrary to this standard behavior, all other 

correlation function exhibit non-trivial temperature 

dependences. Moreover, the detailed analysis around 

the phase-transition point reveals that all the 

correlation functions exhibit a weak energy-type 

singularity at  NTT  . This behavior indicates that 

the relevant phase transition can be of the second 

order. Indeed, the temperature dependences of the 

specific heat presented in Fig. 6 confirm this 

expectation. Moreover, one can verify that the 

specific heat has a logarithmic Onsager-type singu-

larity at  NTT  . Thus one can conclude that the  

phase transitions between quantum dimerized and 

disordered phase belongs to the same universality 

class as that of the usual spin-1/2 2D Ising model. 

This can also be concluded from equations (7)-(9), 

from which one can see that the expression for the 

parameter A is represented by analytical functions 

that cannot lead to new singularities. 
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Fig.4  The temperature variations of Heisenberg 

nearest–neighbor pair–correlation functions. The 

dashed (solid) lines corresponding to correlation 

 in the z-direction (x-direction), respectively. 
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Fig.3  The phase diagram in the JTk NB plane. 
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4.  CONCLUSION 

 

In this work we have investigated magnetic 

properties of the doubly decorated Ising-Heisenberg 

model. Applying the extended decoration-iteration 

transformation, we have exactly calculated  the 

critical temperature, partition function, pair-

correlation functions, internal energy and specific 

heat of the model. The most outstanding finding 

coming from this work is the prediction of the 

unusual quantum dimerized phase existing in the 

system in the whole range of parameters. This phase 

appears also in the ferromagnetic version of this 

model, however, it can exist only in the restricted 

region of the parameters [10].  

Although, the numerical result have been presen-

ted only for the square lattice, it is clear that our 

conclusions can be simply generalized for many 

other planar Ising-Heisenberg models. Of course, the 

method developed in this work can by 

straightforwardly used to study  doubly decorated 

Ising-Heisenberg linear chains. However, in this 

case the results will be completely different, since 

the spin-1/2 Ising linear chain has no phase transion 

at finite temperatures. Moreover, despite of the fact 

that the pure 3D Ising model has not been exactly 

solved, we can apply the present method to the 3D 

models, as well. In fact, we can obtain very accurate 

results for the phase boundaries if we combine the 

present formalism with the results known from the 

series-expansion methods.  

On the other hand, our preliminary calculation 

indicates that the behavior of the doubly decorated 

Ising-Hesenberg models is significantly changed in 

arbitrary space-dimension if the Heisenberg atoms 

have spin 1.  

Finally, we would like to emphasize that our 

theoretical predictions can by very useful in 

understanding of the magnetic properties of some 

real materials. The most promising from this point of 

view seem to be molecular-based magnets that have 

been recently synthesized by some authors [11]. 

These materials have the same structure as the 

model under investigation, therefore we hope that 

the existence of the quantum dimerized phase can be 

experimentally confirmed in the future. 
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