
Acta Electrotechnica et Informatica  No. 4, Vol. 2, 2002 5 

INFLUENCE OF KALMAN FILTER PARAMETERS 
TO THE INDUCTION MOTOR SPEED ESTIMATION 

Krzysztof P. DYRCZ,  Teresa ORLOWSKA-KOWALSKA 
Wroclaw University of Technology 

Institute of Electrical Machines, Drives and Measurements 
ul. Smoluchowskiego 19, 50-370 Wroclaw, Poland 

Phone: (+48 71) 320-35-46, Fax: (+48 71) 320-34-67,  
E-mail: kdyrcz@imne.pwr.wroc.pl, tok@imne.pwr.wroc.pl 

SUMMARY 
The paper deals with the application of Kalman filter for state variable estimation of the induction motor. The 

mathematical model of the extended Kalman filter used for rotor flux and speed estimation was presented. Some simulation 
results were shown in the paper. The influence of parameters of the induction motor equivalent circuit on the state variable 
estimation quality was demonstrated. The problem of suitable choice of Kalman filter parameters, such as elements of the 
covariance matrix Q, was also discussed. The possibility of practical realisation of such Kalman filter was discussed.  
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1. INTRODUCTION 

In regard to reliability of work, quality of 
realisation and comparatively low price, the 
induction motor (IM) has found a wide use in the 
drive systems. Recently is observed a great interest 
in drive systems without mechanical sensors, so-
called sensorless drives. On the other hand, the 
development of microprocessor techniques and 
comparatively cheap signal processors (DSP) have 
enabled the realisation of advanced control methods 
of the induction motor. All these methods require the 
know-ledge of instantaneous values of the motor 
state variables, including the motor speed.  
There are many methods of speed estimation based 
on the mathematical model of the induction motor 
[4],[7]. However, these methods are sensitive to 
changes of motor parameters, what causes 
significant estimation errors of state variables and 
thus incorrect work of the drive system [8].  
From this reason, the usage of many simple 
algorithms of the state variables reconstruction is 
difficult, especially in the case of changes or not 
proper identification of the IM parameters. In such 
cases many authors propose the application of 
Kalman filters, which are specially devoted to the 
dynamical systems which operate in the presence of 
stochastic disturbances [1]-[3].  
The algorithm of Kalman filter, like the other state 
estimators and observers, is based directly on the 
mathematical model of the induction motor, which 
significantly depends on the equivalent circuit 
parameters, changing during the drive operation or 
being badly identified.  
So, the main goal of this paper is the answer to the 
question if the Kalman filter used for the rotor flux 
vector and angular speed estimation is more robust 
to the IM parameter changes than other algorithms 
used for this purpose [8]. In the paper the 

mathematical model of the extended Kalman filter 
used for rotor flux and speed estimation is presented 
and tested in simulations. The influence of 
parameters of the induction motor equivalent circuit 
on the state variable estimation quality is shown. 
The problem of suitable choice of EKF parameters, 
such as elements of the covariance matrix Q, is also 
demonstrated. The possibility of practical realisation 
of such Kalman filter is discussed.  
 
2. INDUCTION MOTOR MATHEMATICAL 

MODEL 
  

Differential equations for the electromagnetic 
variables of the induction motor, with usual 
assumptions [8], can be written in the following 
form of linear state equation [p.u]: 
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A, B, C  ±  are respectively the state, control and 
                   output matrices. 
 

In this model the additional assumption was made, 
e.g. the electromagnetic state variables - the stator 
current and the rotor flux have much faster dynamics 
than the mechanical state variable ± the rotor speed. 
So the state equation is linear in respect to the state 
vector, but its state matrix consists of some elements 
which are speed-dependent and thus variable.  
In such case, to perform the estimation of electro-
magnetic as well as mechanical state variables using 
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Kalman filter, it is possible to extend the state vector 
by the additional element ± the motor speed. In this 
case, the new, extended mathematical model of the 
induction motor will have a form of nonlinear state 
equation. According to the filtering theory [7], the 
noise signals should be added to the state and output 
vectors of the motor. So, with the above assumption, 
the extended model of the induction motor has the 
following form: 
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where: 
- new, extended state vector is: 
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- the extended state function of the motor: 
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- the state matrix with elements dependent on chosen 
state variable: 
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- input matrix Br and output matrix Cr are: 
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where:  f[xr(t),u(t),t] ± nonlinear function,  
u(t) ± as (4), 
G(t) ± the noise gain matrix, 
w(t) ± the state variable noise vector, 
v(t) ± the output signal noise vector, 

and: 
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Next, this model should be written in the discrete 
form and the algorithm of the extended Kalman 
filter can be applied directly. 

3. ALGORITHM OF EXTENDED KALMAN
FILTER 

 
The algorithm of the extended Kalman filter for 

the induction motor model (2) ± (10) can be 
calculated in a few steps: 

1) Computing of the state vector  prediction: 
kkktxTkkkk ks ),(,/Ö/Ö/1Ö ufxx  (11) 

2)  Estimation of filter covariance matrix: 
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where:  Q ± state noise covariance matrix; 

3) Computing of the filter gain matrix: 
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where:  R ± output noise covariance matrix, 
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4) The update of  the filter covariance matrix: 
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5) The state estimation: 
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6) Return to step 1. 

Some initial parameters are necessary for computing 
the algorithm of the extended Kalman filter, such as: 
the state vector in t=0, diagonal noise covariance 
matrices Q[5x5], R[2x2], and the filter (predictor) 
covariance matrix P[5x5]. It is assumed, that w(k) 
and v(k) are gaussian white-noises, independent, 
with average values equal zero: 
E{w(k)}=0, E{v(k)}=0. 
 
4. SIMULATION RESULTS 
 

Based on the presented algorithm of the extended 
Kalman filter, different simulation tests of the rotor 
flux and speed estimation of the induction motor 
were performed. Parameters of the numerical 
simulation and tested motor are presented in an 
Appendix. Numerical calculations were made for 
mathematical models of the motor and filter in the 
stationary reference frames and per unit system, 
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using MATLAB. The main problem in the 
application of the extended Kalman filter algorithm 
is the suitable choice of elements of noise 
covariance matrices Q and R. All these matrices 
were chosen diagonal, based on the expected 
covariance of noises. Values of the diagonal matrix 
R elements were assumed equal. Initial parameters 
of filter covariance matrix P were selected by trail 
and error and presented in the Appendix (Table 1). 
Simulation were performed for the sinusoidal and 
for PWM inverter supply and no-load operation of 
the induction motor.  
In the following figures simulation results of the 
rotor speed, rotor flux and stator current estimation 
using Kalman filter algorithm are presented, for the 
sinusoidal supply and nominal motor parameters 
used in the estimation algorithm.  

a) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

t [s]

  [
pu

]

motor speed 

est. speed 

b) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t [s]

 
r

  [
pu

]

motor flux 

est. flux 

 
c) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-3

-2

-1

0

1

2

3

t [s]

 I s
  [

pu
]

motor current est. current 

 
 

Fig. 1  Actual and estimated state variables of the IM for 
sinusoidal supply: a) rotor speed, b) rotor flux r  ,  

c) stator current is

In Fig.2 the flux and speed estimation error are 
presented, defined as follows: 

Ö,Ö
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Fig. 2  Transient estimation errors of the rotor flux r  
(a) and angular speed  (b) for sinusoidal supply 

 
In the next figures the similar results are shown in 
the case of inverter supply of the IM: in Fig.3 ± rotor 
flux and speed estimation errors and in Fig.4 ± all 
transient variables. 
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Fig. 3  Transient estimation errors of the rotor flux r  

(a) and angular speed   (b) for PWM supply 



8 Influence of Kalman Filter Parameters to the Induction Motor Speed Estimation 
 

The reference frequency was changed during 0.1s 
from 0 to nominal frequency 50 Hz. After 0.3 s the 
reference frequency was changed to 30Hz, then at 
t=0.55s it was again changed to nominal frequency.  
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Fig. 4  Actual and estimated state variables of the IM for 

inverter supply: a) rotor speed, b) rotor flux r  ,  
c) stator current is  

In simulation tests the influence of changes of the 
equivalent circuit parameters and elements of the 
covariance matrix Q on the rotor flux and speed 
estimation quality was also tested. 
Form the simulation tests performed for nominal 
motor parameters concludes, that in the case of the 
sinusoidal supply as well as for PWM supply the 
rotor flux and speed estimation errors occur only 
during transient operation of the motor, like starting, 
change of the speed reference value etc. In the 
steady-state operation of the motor this error is close 

to zero for the sinusoidal supply and maximum 2% 
for the PWM supply.  
But in the case when motor parameters used in the 
Kalman filter algorithm are different than the 
nominal motor parameters, much bigger transient 
errors occur in the flux and speed estimates. In Fig.9 
the influence of motor parameter changes to the 
quality of state variables estimation was presented.  

a) 

 
b) 

 
c) 

Fig. 5 The influence of motor parameters changes to speed  
estimation quality: a) stator resistance Rs , b) rotor 

resistance Rr ,c) magnetising reactance XM  
 
To have better comparison, the average errors of 
speed estimation for changing motor parameters 
were calculated, according to the following formula: 
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- rotor speed,  - estimated rotor speed,   
n ± number of all speed samples. 
 
In Fig.6 these average errors calculated for the time 
period (0.1-0.7) s of the motor operation are 
presented. The samples from the initial period of the 
motor starting process were not taken into account 
due to the relatively big transient estimation error, 
which had increased significantly the final 
calculation result in the expression (20). 
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Fig. 6  Average speed estimation errors for motor 
parameters changes: a) stator resistance Rs , b) 

rotor resistance Rr , c) magnetising reactance XM  

These average estimation errors, for relatively small  
changes of motor resistance in the range of 20% 
are not significant in the case of motor parameter 
variations, except the change of the magnetising 
reactance. But it should be mentioned, that the 
estimation errors calculated only for the transient 
process of the motor are much greater and reach the 
values of 10-12% for stator and rotor resistance Rs , 
Rr changes and even 35% for the magnetising 
reactance XM  changes.  
The influence of the change of covariance matrix Q 
elements on the motor speed estimation quality was 
also tested. The speed estimation quality is mostly 
dependent on Q[5,5] element, what was 
demonstrated in Fig.7. In the next figure the average 

speed estimation error calculated similarly as in the 
case of motor parameter changes was presented.  

 
Fig. 7  The influence of Q[5,5] element on the speed 
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Fig. 8  Average speed estimation error for changes of 

covariance matrix element Q[5,5] 
 
The average estimation errors calculated only for the 
transient process of the motor are much greater and 
reach the values in the range of 15%. So, the speed 
estimation quality is very much dependent on the 
suitable choice of the Q matrix elements. 
The EKF algorithm requires a relatively small 
integration step used in the numerical algorithm, 
because of accuracy and stability problems. It is 
shown in Fig.9, for the integration steps changing in 
the range of t=(0.0001 0.00008)s. 

 
Fig. 9  The influence of the numerical integration step  

to the stability of EKF algorithm 
 

From the performed  simulation tests concludes that 
the Extended Kalman Filter is not completely robust 
to the identification errors of the motor parameters. 
The incorrect value of magnetising reactance used in 
the EKF algorithm causes significant estimation 
errors, but if this parameter error is greater than 
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10%, it can completely destabilise the numerical 
algorithm of EKF. It is caused by not suitable 
adaptation of elements of the noise covariance 
matrix Q for the changed motor parameters. If 
elements of this matrix are not properly chosen, the 
transient as well as steady-state errors occur in all 
state variable estimates. It should be mentioned, that 
elements of this matrix should be adapted to the 
changes of motor parameters, but it is relatively 
difficult task and the problem should be solved in 
a different way. 
 
5. CONCLUSION 
  

The Extended Kalman Filter algorithm is an 
interesting solution in the task of the IM speed 
estimation. But its algorithm is much more 
complicated  in comparison with other solutions 
based on control theory methods [7,8], especially 
due to significant troubles with the choice of 
elements of the noise covariance matrix Q and R. 
The other problem is the requirement of very small 
numerical integration step to obtain the accurate 
solution of difference equations of the EKF 
algorithm. This requirement is especially important 
from the practical realisation point of view. Thus 
only very fast digital signal processor is able to solve 
the problem of simultaneous estimation of the rotor 
flux vector and rotor speed in one unified algorithm 
based on the EKF.  
Besides, dynamical properties of the EKF can be 
controlled only by the choice of covariance matrices 
Q and R. In regard to limitations connected with the  
choice of elements of these matrices, any flexibility 
does not exist in adjustment of such estimator 
parameters as the speed of convergence of the rotor 
flux and the angular speed estimates, dynamics of 
the estimator response or its robustness to changes 
of motor parameters on the stage of the filter design. 
From this point of view, the Luenberger state 
observers [7,8] seems to a much more flexible 
solution. 
 
6. APPENDIX 
 
Tab. 1  Simulation parameters 
For the sinusoidal supply: 
sampling step Ts = 0,00008 s, 
P = diag[0.001, 0.001, 0.22, 0.22,0.15],  
Q = diag[0.2, 0.2, 5.0E-2, 5.0E-2, 4.45E-2], 
R = diag[0.01, 0.01] 

For the inverter supply: 
sampling step Ts  = 0,00008s, 
P = diag[0.01, 0.01, 0.22, 0.22, 0.15], 
Q = diag[0.4, 0.4, 1.0E-2, 1.0E-2, 1.5E-2], 
R = diag[0.01, 0.01]. 

Parameters of SDChm-180-M motor: 
PN=5,5kW; UN=380V; IN=13,5A; nN=910 obr/min; 

=0,74; cos =0,73; Mmax/MN=2,1 

Tab. 2  Parameters of the equivalent motor circuit 
Rs Rr Xs Xr XM [-] 

1,085 1,803 32,4 36,329 29,6 [ ] 

0,0665 0,1106 1,9877 1,9877 1,816 [p.u.] 
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