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SUMMARY 
How to cancel the software crisis? To prove that programs are reliable. But it is possible only in mathematics. So, the 

programming has to use mathematics. In this paper we present basic mathematical concepts that enable to start discussion 
about the theory of programming in the framework of the classical mathematical logic, an axiomatic set theory, category 
theory,  and universal algebra. 
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1. INTRODUCTION 

What is a program? The popular answer had 
been given by Niklaus Wirth as a title of his famous 
book Data structures + Algorithms = Programs 
[10]. But what means precisely the words 
Äalgorithms³ and Ädata structures³ ? We are not able 
to formulate the universal meaning of these concepts 
in a unique manner. However, in Wirth's book it is 
clear, that an algorithm means some sequence of 
statements written in the programming language 
Pascal, while data structures are definitions of types 
and declarations of variables of uniquely defined 
types written in the same programming language. 
But to prove correctness of an executed program, we 
need unambiguous formulation of the essential 
notions of data structures and algorithms. We take 
over from this book only the concept that description 
of algorithms and data structures are texts written in 
some artificial languages with mathematically 
defined meaning, i.e. in an unambiguous syntax and 
semantics. But we add to Wirth¶s concept that every 
step of algorithm including compiler, runtime 
environment and operating system has to be 
mathematically proved. 

To characterize forming of a program we have 
 to formulate a reasonable question for which we 

want to find a  proved answer, and 
 to describe with an unambiguous (not natural) 

language the process of obtaining a proved 
answer of the question in computer memory. 

Firstly, we have to formulate all preconditions, 
which make the question answerable (requirements 
specification). Secondly, we have to outline a 
mapping, which in a proved manner, truly work out 
an answer. We suppose, that the compiler, the 
runtime environment and the operating system are 
already proved to be correct, and we deal only with 
the correct mapping from the requirements 
specification written in a specification language, to 
the program text written in some programming 
language. (Providing the runtime environment can 
be able to check the correctness of execution, i.e. the 
dynamic semantics and invariants, the stacks, the 

queues, the trees and other dynamic data structures.) 
We emphasize that this mapping is realized by a 
human programmer (maybe with the assistence of a 
computer in the framework of a correct operating 
system). Of course, we suppose that the specified 
question is decidable (in the metamathematical 
sense) and the compiled program, the runtime 
environment and the operating system (in the 
computer) together have a reasonable complexity. 
Without these conditions the concept of executed 
program in the computer memory has no unique  
meaning. 

We still note that we do not bind our 
considerations to any concrete syntax and semantics 
of specification and/or programming languages. We 
only suppose that the syntax is unambiguous and the 
semantics is mathematically formulated. Some 
authors called the concrete forms of our mapping as 
transformation [3,4]. But our mapping is a 
generalized transformation, by its mathematical 
foundation we want to avoid the pittfalls of the 
software crisis. 

In this paper we talk about programming in 
a mathematical language, because we want to prove 
that an executed and terminated program in a 
computer memory truly answers a reasonable human 
question. 

2. CATEGORIES  

Every programmer knows that the design of 
a large scale program is constructed by frequent 
application of mappings. Because we would like to 
formulate mathematically the reasoning about 
programming process, we need mathematical 
notions by which this mapping is constructed. Such 
a notion is category. We begin with description of 
object. When we phenomenologically describe our 
world, we can emphasize some events or things of it 
and we decide about them that they have some kind 
of Äindividuality³, i.e. they differ from others in 
some sense. We call such an event or a thing as 
object. This description of objects includes the fact 
that they may not exist yet, but it is possible to 
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create them. Therefore the phrase: Äan object exists³ 
actually means that it is possible to create it [9].  
Such notion of object is useful for us because during 
the programming process we really create new 
objects from ready ones. 

We suppose that there are some already created 
objects which have a common property, and there 
are no promoted objects between them. Such objects 
form a collection. Let we have a collection where 
every ob-ject has an uniquely defined property and 
every one can be promoted from other objects. Such 
collection we call a set. The notion of set can be 
axiomated. Elements of a set X are objects satisfying 
the common property ³object is an element of the 
object³, written x  X, which promotes a set object X 
from an element objects denoted by x. A class is a 
collection of objects with loosely defined common 
property. A class is not necessary a set. 

In the programming process there are frequently 
such situations when programmers are interested 
only in special kinds of mappings between classes 
(or sets), called morphisms, and they are not 
interested in actual structure of the domains and 
codomains of them. Therefore we introduce the 
known concept of category [1,8] that we use in the 
defining rather sophisticated concepts needed for 
exact description of the program development 
process. 
 
Definition 1: A category C is a quadruple C=(CObj, 
homC, idC, ;), where  
 CObj is a class of  objects; 
 homC is a set of category morphisms f:A B, for 

all objects A,B CObj ; for any objects A,B, we 
denote by homC(A,B) the set of all morphisms 
between them; 

 idC is a set of identity morphisms idA:A A, for 
every object A CObj ; 

 ; is an operator called morphism composition 
which assigns to two morphisms f:A B and 
g:B C, where A,B CObj a composite morphism 
g  f:A C such that  g ; f  homC (A,C). 

  
The components of a category C are subjects to the 
following  properties: 
1. for each morphism f:A B,  A.B CObj  it holds        

idB ; f = f = f ; idA ; 
2. the composition of category morphisms is 

associative;  
3. the sets homC (A,B), for any objects A,B CObj are 

pairwise disjoint. 
Now we introduce several examples of 

categories that are useful for our purposes. 
 
Example 1: Category Set of sets.  
The category of sets is Set=(SetObj,homSet,idSet, ;), 
where 
 SetObj is the class of all sets; 

 homSet is the set of of mapping sets from A to B, 
i.e. 
homSet(A,B)={f:A B|A.B SetObj} for every two  
sets A,B; 

 idSet is the set of identity mappings idA:A A, for 
every set A; 

 ; is the operator of mapping composition 
between sets. 

It is clear that components of Set satisfy category 
properties, i.e. we can say that Set is a category. 
   

Let C be a category. Special cases of C are the 
following: 
 if C contains exactly one object, it is essentially a 

monoid; 
 if the sets homC (A,B) of morphisms between any 

two objects A,B have at most one element, then 
C  is essentially a preordered class; 

 if C consists only of objects without morphisms, 
i.e. for any objects A,B CObj, homC (A,B)= , C
is called discrete category. Clearly, a discrete 
category is a class of objects. 

 if CObj is  empty class, then such category is 
empty. 

Example 2: Sequential automaton in the category 
Set. 

We can nested in the category Set  the concept of 
sequential automaton.  

A sequential S-automaton [2] P= (Q, , G, , q0 ) 
is a device that is at one state q Q and, receiving an 
input signal  from the input alphabet S, it changes q 
to another  state qµ and simultaneously emits an 
output signal from the output alphabet G. Formally, 
 Q  is the set of states; G is the output alphabet; 
 :Q S Q  is the next-state mapping, i.e. each 

state q and input signal  determine the next state 
qµ=  (q,  ); 

 : Q  G is an output mapping; 
 q0  is a special element of Q, the initial state of P. 

Let P=(Q, , G, , q0 ) and Pµ=(Qµ, µ,Gµ, µ,q0µ) be S-
automata. A morphism from P to Pµ is a pair of 
mappings   (f, fout): P Pµ, where 
           f:Q Qµ  and  fout:G Gµ 
such that fout ;  = µ and f preserves the initial state,  
          f  (q0)= q0µ. 
Because Q, S and G are sets,  and  are mappings 
between sets, a sequential S-automaton can be 
depicted in the category Set as it is illustrated by the 
diagram in Fig.1, where the set I={0} is a singleton 
such that the initial state q0= (0) Q. 

                                                                        
              Q  S                  Q                   G                        
 
                                                
 
                                         I 

Fig. 1  S-automaton in Set 



Acta Electrotechnica et Informatica  No. 4, Vol. 2, 2002 53 

Very useful concept in category theory is the  
principle of duality. Let C be a category. We get a 
dual (or opposite) category Copp by changing the 
direction of all category morphisms in C. Every 
concept and every theorem in category theory comes 
with its dual version, where all morphisms are 
reversed.  
Morphisms between categories are called functors. 
 
Definition 2: Let C and Cµ be categories. A functor 
F:C Cµ consists of 
 a mapping F: CObj CµObj; and 
 a set of mappings F:homC(A,B)  homCµ(F(A), 

F(B)), where A and B range over CObj, so that for 
every A holds F(idA)=idF(A) and F(g);F(f)=F(g;f) 
for any morphisms f:A B and g:B C in C. 

  
We note here that in our theory of programming 
a functor may create objects and morphisms of the 
target category from the ones of the original 
category in a mathematically proved manner.  

An identity functor Id on an arbitrary category C
consists of an identity morphism on the class CObj
and of the set of identity mappings on homC.  

Functors are defined as morphisms between cate-
gories. It is trivial to prove that they are closed under 
composition, which is associative, because it is the 
composition of functions between classes. We have 
introduced identity functor, too. Therefore we can 
consider about category of categories. But we forbit 
the existence of the category of all categories 
(Russell¶s paradox). To avoid this situation we 
consider the category of small categories, where 
small category is such, which objects form a set. 
Then the category Cat of small categories consists of 
the class CatObj of small categories as objects and of 
the set homCat of functors between them as category 
morphisms. For every object C from the category  
Cat, the identity functor IdC is the identity morphism 
and idCat is the set of them. Composition of category 
morphisms is the composition of functors, which is 
associative. We can say that Cat is a category, but it 
is not a small category. 

Let C be an arbitrary category. A special case of 
functor is the functor FC:C Set, which assigns to 
every object A CObj its underlying set (without 
structure)  X  SetObj, such that 

FC(A)=X 
and to every category morphism f:A B, A,B  CObj  
a mapping  p:X Y defined by 

FC ( f )= p, 
where X=FC (A) and Y=FC (B). 
Functor FC  maps a structured categoryµs objects to 
their underlying sets, i.e. it Äforgets³ their structures. 
Therefore FC  is called  forgetful functor.  

Finally, we introduce the notion of object-free 
category, which will be very interesting in the theory 
of programming, because it deals only with 
morphisms. 
An object-free  category is a partial binary algebra 

M = (M, ;) 
where members of M are morphisms satisfying the 
following conditions: 
 composition of morphisms is associative; 
 for every morphism f there exist units u1 , u2 such 

that u1 ; f and f ; u2 are defined; 
 for any pair of units (u1 , u2) the class hom(u1 , 

u2) is a set. 
For every category C we can construct 
corresponding  object-free category 
 

MC = (homC , ;). 
 

Functors can also be considered as objects. 
There-fore it is possible to consider morphisms 
between func-tors called natural transformations. 
 
Definition 3: Let F,G: C  Cµ be functors. A  
natural transformation : F G from F to G is 
 
 a class of morphisms ( A: F(A)  G(A))A C  bet-

ween images of every object from C under 
functors F and G, and 

 for every morphism f:A B in C it holds 
A ; G(f) = F(f) ; B 

i.e. the  diagram in Fig.2 commutes. 
 

         F( ) 
               F(A)                                       F(B) 
 
              A                                                 B
 
 
               G(A)                                      G(B) 
                                      G( ) 

 
Fig. 2 Natural transformation 

  
 
3. INSTITUTIONS 

In this section we introduce useful logical and 
mathematical notion that enables us to deal with 
computer programming in the mathematically 
tractable manner.  

One of the most significant results of Software 
Engineering is the division of a large scale program 
into intelectually managable modules called data 
abstractions. A data abstraction contains parameters 
and local data needed for related procedures and 
functions and  enables to import and/or export them 
from or to another data abstractions. We emphasize 
here that the procedures and functions inside a data 
abstraction, i.e. local ones of it, must have unique 
properties to be these procedures and functions 
executable in the computer memory. 

We recall the algebraic definition of a scheme of 
data abstraction that we can formulate in 
a conservative extension of an axiomatic set theory. 
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Definition 4: A signature  is a triad =(S,O,P) 
consisting of 
 S, a linear ordered finite set of sorts; 
 O, a finite set of (total or partial) function names 

of the form f:<s1,«,sn>  s, where n is the arity 
of f, <s1,«sn>  s  is its profile and s1,«sn,s S; 

 P, a finite set of predicate names of the form 
p:<s1,«sn>, where n is the arity of p, s1,«sn S. 

  
Let  and µ be signatures. Signature morphism : 

µ maps sorts, function names and predicate 
names from to the corresponding ones from µ, so 
that it preserves linear ordering of sorts, function 
profiles and predicate arities. 
 
Example 3: A simple signature for natural numbers 
can be of the form 
 

nat=(Snat,Onat,Pnat) 
where 
     Snat={nat} 
    Onat={zero:  nat, succ: nat  nat} 
    Pnat={_ _: <nat, nat>} 
  

Now we briefly introduce the classical first order 
predicate logic, which enables us to construct closed 
formulae.  Symbols of this logic are:  
 variables of different sorts grouped into disjunct 

classes;  
 predicate names with their arities; 
 function names with their profiles. Function 

names with zero arities are constants of some 
sorts; 

 logical connectives  , , , , ; 
 quantifiers  and  ; 
 auxiliary symbols, e.g. (  and  ). 

Terms are formed by repeated application of the 
following two rules:  
 every variable and constant is a term of some 

sort; 
 if f:<s1,«sn>  s  is a function name and   t1,«tn  

are terms of sorts s1,«sn, respectively, then 
f(t1,«tn) is also a term of the sort s. 

Formulae are created by repeated application of the 
following three rules:  
 if t1,«tn  are terms of sorts s1,«sn, respectively, 

and  p:<s1,«sn> is a predicate name, then 
p(t1,«tn)  is a basic formula;  

 if 1 and 2 are formulae, then also  1 2, 
1, 1 2, 1 2 and 1 2  are formulae;  

 if  is a formula and x:s is a variable of a sort s, 
then also (  x)   and (  x)   are formulae. 

 
Every variable in a basic formula is free. Logical 
connectives do not change the freeness of variables. 
Quantifiers bind their variables, i.e. a variable x is 
bound in the formulae (  x)  and (  x) . A formula 

 in which all its variables are bound is closed 

formula. Closed formulae can be evaluated to be true 
or false, i.e. they are sentences. For instance, the 
following closed formula is sentence (more 
precisely, the power axiom of the Zermelo-Fraenkel 
axiomatic set theory): 

(  x)(  y)(  z)(z  y (  u)(u  z  u  x)) 
because the variables x,y,z,u are bound. 

Let be a signature. We suppose that its sorts, 
function names and predicate names correspond 
with some symbols of our logic. So, we can 
formulate closed formulae evaluated to true 
sentences, which consist of the predicate names 
from . They characterize some well-formed 
properties of function names from the signature. 
Such closed formulae we call -sentences. The set 
of true  -sentences we denote by . So, we can 
express a specification of a data abstraction as a pair 

 
Spec =( ,  ). 

 
We construct the class SignObj  of signatures. We 

denote by homSign the set of all signature morphisms 
between elements of this class, and by  idSign  the set 
of all identical signature morphisms id : ,  for 
every  SignObj. Because the composition of 
signature morphisms is closed in SignObj and 
associative,  
 

Sign=(SignObj, homSign, idSign, ;) 

is the category of signatures. 
For any signature   from the category Sign we 

can construct a -algebra as  follows. 
 
Definition 5: Let =(S, O, P) be a signature. A - 
algebra is 
      

A=(SA,OA,PA), 
where 
 SA  is a class of data sets, such that the sorts from 

S are bijectively mapped to the sets from SA.  
 OA  is the set of (total or partial) functions (alge-

braic operations) named by (total or partial) 
function names from O. The domains and codo-
mains of the functions come from the profiles of 
the corresponding function names from O. 

 PA =  as defined above. We call these true -
sentences also -axioms. 

Example 4: One of the possible nat-algebra for the 
signature nat  introduced in the Example 3 can be  
  

AN=(SN, ON, PN), 
where 
 SN= N  is the set of natural numbers; 
 ON contains the functions zeroN=0 and succN (n) 

=n+1, for a variable n ranging over the set N; 
 PN contains the relation defined by the true nat-

axiom 



Acta Electrotechnica et Informatica  No. 4, Vol. 2, 2002 55 

(  n1)(  n2)(n2= succN (n1)) 

From -axioms we can derive other true closed 
-formulae by the following way. Let   be a set of 
-axioms from a -algebra A. A -formula   is 

derivable from  in A if there exists a sequence of  
true closed -formulae 

1, 2,«, k 
such that 
 k  is  , and 
 every i , i<k,  is either a -axiom or it can be 

derived from the previous -formulae by the ap-
plication of the following two rules: 
i) if 1  and 1 2 are true closed formulae, 
then also 2  is true closed formula (modus 
ponens); 
ii) if   is a true closed formula and x is any  
variable, then also ( x)  is true closed formula 
(generalization  rule).           

Such sequence  we call a derivation for  in A. If 
there exists a derivation for a -formula in A, we 
say that  is satisfied in the -algebra A, denoted by  
A � �� Such -algebra in which we still have 
satisfied closed -formulae we call -model. 

We define the functor Sen: Sign  Set from the 
category of signatures to the category of sets, which 
assigns to every signature  a set of true -sentences 
and to every signature morphism : µ  the 
mapping  trans-lation of -sentences that replaces 
all symbols in a -sentence   with their images 
from µ under . 

The class of the -models together with the set of 
homomorphisms between them form the category 
Mod( ) of -models. 

Let :  µ be a signature morphism and Aµ a 
µ-model. A reduct  of Aµ with respect to (w.r.t)  is 

the -model 
Aµ| =( S¶A| , O¶A| , P¶A| ) 

where 
 S¶A|  is the class of data sets whose 

corresponding sorts are counter images of the 
sorts from Sµ w.r.t. ; 

 O¶A|  is the set of functions whose corresponding 
function names are counter images of the 
function names from Oµ w.r.t. ; 

 P¶A| is the set of µ-sentences containing 
predicates named by counter images of the 
predicate names from Pµ w.r.t. . 

Reduct functor  _|  : Mod( µ )  Mod( ) from the 
category of µ-models to the category of -models 
w.r.t. the signature morphism : µ  maps 
 each µ-model Aµ to its reduct, the -model Aµ| , 

and 
 each µ-homomorphism between µ-models to 

-homomorphism between the corresponding 
reducts. 
We can define the functor Mod: Signopp  Cat

from the dual category of signatures to the category 

of small categories that assigns to every object  the 
category Mod( ) of -models and to every signature 
morphism : µ the reduct functor _| : Mod( µ) 

 Mod( ). 
Now we have defined all neccessary components 

of institution. An institution  I is a quadruple 
  

I=(Sign, Sen, Mod,  ) 
where 
 Sign is the category of signatures, Sen and Mod 

are functors as defined above, 
   is a set of satisfaction relations   for every 

signature   from Sign, 
 if :  µ  is a signature morphism from Sign 

and  is a -sentence, then it holds the following 
equi-valence: 

Aµ µ Sen( )( )  Mod( )(Aµ) �

i.e.  is satisfied in the reduct  Aµ|  iff its translation 
w.r.t.  is satisfied in A. 

 
We have shown that institutions meaningfuly 

formalize the requirements specifications. But 
during a design and execution of a program in 
computer memory, we necessary construct the 
following steps, too: a program, a machine code 
before execution, and state of the computer memory 
after terminating of a program. Can we formalize 
also a program written in some programming 
language, a program as a sequence of machine 
instructions, and state of the memory after 
terminating machine instructions sequence? Yes, the 
classical mathematical logic, pure mathematics 
based on an axiomatic set theory, Theoretical 
Computer Science and Software Engineering are 
able to formalize and prove statements about these 
stages of programming process. 

Our example of sequential automata confirms 
that. But the programmer from the underlying 
requirements specification really constructs 
a program; a compiler, librarians, linkage editors and 
loaders really construct the sequence of executable 
machine instructions; and finally, a runtime 
environment and operating system really execute 
this sequence and stop it provided this program is 
terminated. These Äconstructions³ are mappings of 
institutions that also a programmer, who is well-
educated mathematician, can work out and he can 
formalize true proved statements about the 
correctness of the whole programming process. For 
brevity, these mappings we will call arrows and we 
suppose that they are mathematically tractable 
entities. As a simple example (based on the similar 
one in [5]) of such an arrow  follows. 

Example 5: Let I= (Sign, Sen, Mod, ) be an 
institution. We construct 
 a functor : Sign  Signµ creating a new 

category Signµ of signatures so that we construct 
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to every signature  from Sign a signature µ and 
to every signature morphism : 1 2  from 
Sign a morphism µ: ( 1)  ( 2). Because 

( 1) and ( 2)  are signatures, µ is a signature 
morphism. It is trivial to prove that so 
constructed Signµ is the category with objects 

( )  and category morphisms µ between them. 
 a natural transformation Mod: Mod  Modµ; , 

i.e. a set of morphisms 
 

Mod: Mod( ) Modµ(  (  )) 
 
for every signature from Sign, such that it 
constructs for every -model A a ( )-model Aµ, 
and for every reduct functor _|  it constructs a 
reduct functor _| ( ). 

We can formulate µ-sentences µ for every 
signature µ from Signµ satisfied (i.e. proved) in µ-
models Aµ, Aµ µ µ , so that there exists 
 a natural transformation  Sen:Senµ;   Sen i.e. a 

set of morphisms 
 

µ
Sen: Senµ(  (  ))  Sen(  ) 

 
for every signature  from Sign; and for every -
model. 
A from Mod( )  the following equivalence holds: 

 
A µ

Sen ( µ)  Mod(A) µ ( ) µ 
 
The construction described above ensures that 

 
Iµ=(Signµ, Senµ, Modµ, µ) 

 
is an institution and we call the morphism 

 
 =( , Mod, Sen): I  Iµ 

 
institution morphism. 

 
 
4. CONCLUSION 
 

Finally, we should like to emphasize that we are 
returning to the Polya¶s idea of problem solving in 
mathematics [6,7]. From the mathematics¶s point of 
view the programming is such a problem solving. It 
is clear in the case how the programmers work out 
their programs respecting in every step their 
requirements  specifications.  But  it  has  been  clear 

also when the programmers create special but 
correct programs for compilation, etc. We are sure 
that the software crisis should be stepped over and 
the mathematically well-educated programmers have 
to construct correct programs.  
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