
Acta Electrotechnica et Informatica No. 4, Vol. 2, 2002 51

ABOUT METAMATHEMATICS OF COMPUTER PROGRAMMING

Valerie NOVITZKÈ
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics,
Technical University of Koãice, Letni 9, 042 00 Koãice, E-mail: Valerie.Novitzka@tuke.sk

SUMMARY
How to cancel the software crisis? To prove that programs are reliable. But it is possible only in mathematics. So, the

programming has to use mathematics. In this paper we present basic mathematical concepts that enable to start discussion
about the theory of programming in the framework of the classical mathematical logic, an axiomatic set theory, category
theory, and universal algebra.

Keywords: specification, program, category, institution

1. INTRODUCTION

What is a program? The popular answer had
been given by Niklaus Wirth as a title of his famous
book Data structures + Algorithms = Programs
[10]. But what means precisely the words
Äalgorithms³ and Ädata structures³ ? We are not able
to formulate the universal meaning of these concepts
in a unique manner. However, in Wirth's book it is
clear, that an algorithm means some sequence of
statements written in the programming language
Pascal, while data structures are definitions of types
and declarations of variables of uniquely defined
types written in the same programming language.
But to prove correctness of an executed program, we
need unambiguous formulation of the essential
notions of data structures and algorithms. We take
over from this book only the concept that description
of algorithms and data structures are texts written in
some artificial languages with mathematically
defined meaning, i.e. in an unambiguous syntax and
semantics. But we add to Wirth¶s concept that every
step of algorithm including compiler, runtime
environment and operating system has to be
mathematically proved.

To characterize forming of a program we have
 to formulate a reasonable question for which we

want to find a proved answer, and
 to describe with an unambiguous (not natural)

language the process of obtaining a proved
answer of the question in computer memory.

Firstly, we have to formulate all preconditions,
which make the question answerable (requirements
specification). Secondly, we have to outline a
mapping, which in a proved manner, truly work out
an answer. We suppose, that the compiler, the
runtime environment and the operating system are
already proved to be correct, and we deal only with
the correct mapping from the requirements
specification written in a specification language, to
the program text written in some programming
language. (Providing the runtime environment can
be able to check the correctness of execution, i.e. the
dynamic semantics and invariants, the stacks, the

queues, the trees and other dynamic data structures.)
We emphasize that this mapping is realized by a
human programmer (maybe with the assistence of a
computer in the framework of a correct operating
system). Of course, we suppose that the specified
question is decidable (in the metamathematical
sense) and the compiled program, the runtime
environment and the operating system (in the
computer) together have a reasonable complexity.
Without these conditions the concept of executed
program in the computer memory has no unique
meaning.

We still note that we do not bind our
considerations to any concrete syntax and semantics
of specification and/or programming languages. We
only suppose that the syntax is unambiguous and the
semantics is mathematically formulated. Some
authors called the concrete forms of our mapping as
transformation [3,4]. But our mapping is a
generalized transformation, by its mathematical
foundation we want to avoid the pittfalls of the
software crisis.

In this paper we talk about programming in
a mathematical language, because we want to prove
that an executed and terminated program in a
computer memory truly answers a reasonable human
question.

2. CATEGORIES

Every programmer knows that the design of
a large scale program is constructed by frequent
application of mappings. Because we would like to
formulate mathematically the reasoning about
programming process, we need mathematical
notions by which this mapping is constructed. Such
a notion is category. We begin with description of
object. When we phenomenologically describe our
world, we can emphasize some events or things of it
and we decide about them that they have some kind
of Äindividuality³, i.e. they differ from others in
some sense. We call such an event or a thing as
object. This description of objects includes the fact
that they may not exist yet, but it is possible to

52 About Metamathematics of Computer Programming

create them. Therefore the phrase: Äan object exists³
actually means that it is possible to create it [9].
Such notion of object is useful for us because during
the programming process we really create new
objects from ready ones.

We suppose that there are some already created
objects which have a common property, and there
are no promoted objects between them. Such objects
form a collection. Let we have a collection where
every ob-ject has an uniquely defined property and
every one can be promoted from other objects. Such
collection we call a set. The notion of set can be
axiomated. Elements of a set X are objects satisfying
the common property ³object is an element of the
object³, written x X, which promotes a set object X
from an element objects denoted by x. A class is a
collection of objects with loosely defined common
property. A class is not necessary a set.

In the programming process there are frequently
such situations when programmers are interested
only in special kinds of mappings between classes
(or sets), called morphisms, and they are not
interested in actual structure of the domains and
codomains of them. Therefore we introduce the
known concept of category [1,8] that we use in the
defining rather sophisticated concepts needed for
exact description of the program development
process.

Definition 1: A category C is a quadruple C=(CObj,
homC, idC, ;), where
 CObj is a class of objects;
 homC is a set of category morphisms f:A B, for

all objects A,B CObj ; for any objects A,B, we
denote by homC(A,B) the set of all morphisms
between them;

 idC is a set of identity morphisms idA:A A, for
every object A CObj ;

 ; is an operator called morphism composition
which assigns to two morphisms f:A B and
g:B C, where A,B CObj a composite morphism
g f:A C such that g ; f homC (A,C).

The components of a category C are subjects to the
following properties:
1. for each morphism f:A B, A.B CObj it holds

idB ; f = f = f ; idA ;
2. the composition of category morphisms is

associative;
3. the sets homC (A,B), for any objects A,B CObj are

pairwise disjoint.
Now we introduce several examples of

categories that are useful for our purposes.

Example 1: Category Set of sets.
The category of sets is Set=(SetObj,homSet,idSet, ;),
where
 SetObj is the class of all sets;

 homSet is the set of of mapping sets from A to B,
i.e.
homSet(A,B)={f:A B|A.B SetObj} for every two
sets A,B;

 idSet is the set of identity mappings idA:A A, for
every set A;

 ; is the operator of mapping composition
between sets.

It is clear that components of Set satisfy category
properties, i.e. we can say that Set is a category.

Let C be a category. Special cases of C are the
following:
 if C contains exactly one object, it is essentially a

monoid;
 if the sets homC (A,B) of morphisms between any

two objects A,B have at most one element, then
C is essentially a preordered class;

 if C consists only of objects without morphisms,
i.e. for any objects A,B CObj, homC (A,B)= , C
is called discrete category. Clearly, a discrete
category is a class of objects.

 if CObj is empty class, then such category is
empty.

Example 2: Sequential automaton in the category
Set.

We can nested in the category Set the concept of
sequential automaton.

A sequential S-automaton [2] P= (Q, , G, , q0)
is a device that is at one state q Q and, receiving an
input signal from the input alphabet S, it changes q
to another state qµ and simultaneously emits an
output signal from the output alphabet G. Formally,
 Q is the set of states; G is the output alphabet;
 :Q S Q is the next-state mapping, i.e. each

state q and input signal determine the next state
qµ= (q,);

 : Q G is an output mapping;
 q0 is a special element of Q, the initial state of P.

Let P=(Q, , G, , q0) and Pµ=(Qµ, µ,Gµ, µ,q0µ) be S-
automata. A morphism from P to Pµ is a pair of
mappings (f, fout): P Pµ, where
 f:Q Qµ and fout:G Gµ
such that fout ; = µ and f preserves the initial state,
 f (q0)= q0µ.
Because Q, S and G are sets, and are mappings
between sets, a sequential S-automaton can be
depicted in the category Set as it is illustrated by the
diagram in Fig.1, where the set I={0} is a singleton
such that the initial state q0= (0) Q.

 Q S Q G

 I

Fig. 1 S-automaton in Set

Acta Electrotechnica et Informatica No. 4, Vol. 2, 2002 53

Very useful concept in category theory is the
principle of duality. Let C be a category. We get a
dual (or opposite) category Copp by changing the
direction of all category morphisms in C. Every
concept and every theorem in category theory comes
with its dual version, where all morphisms are
reversed.
Morphisms between categories are called functors.

Definition 2: Let C and Cµ be categories. A functor
F:C Cµ consists of
 a mapping F: CObj CµObj; and
 a set of mappings F:homC(A,B) homCµ(F(A),

F(B)), where A and B range over CObj, so that for
every A holds F(idA)=idF(A) and F(g);F(f)=F(g;f)
for any morphisms f:A B and g:B C in C.

We note here that in our theory of programming
a functor may create objects and morphisms of the
target category from the ones of the original
category in a mathematically proved manner.

An identity functor Id on an arbitrary category C
consists of an identity morphism on the class CObj
and of the set of identity mappings on homC.

Functors are defined as morphisms between cate-
gories. It is trivial to prove that they are closed under
composition, which is associative, because it is the
composition of functions between classes. We have
introduced identity functor, too. Therefore we can
consider about category of categories. But we forbit
the existence of the category of all categories
(Russell¶s paradox). To avoid this situation we
consider the category of small categories, where
small category is such, which objects form a set.
Then the category Cat of small categories consists of
the class CatObj of small categories as objects and of
the set homCat of functors between them as category
morphisms. For every object C from the category
Cat, the identity functor IdC is the identity morphism
and idCat is the set of them. Composition of category
morphisms is the composition of functors, which is
associative. We can say that Cat is a category, but it
is not a small category.

Let C be an arbitrary category. A special case of
functor is the functor FC:C Set, which assigns to
every object A CObj its underlying set (without
structure) X SetObj, such that

FC(A)=X
and to every category morphism f:A B, A,B CObj
a mapping p:X Y defined by

FC (f)= p,
where X=FC (A) and Y=FC (B).
Functor FC maps a structured categoryµs objects to
their underlying sets, i.e. it Äforgets³ their structures.
Therefore FC is called forgetful functor.

Finally, we introduce the notion of object-free
category, which will be very interesting in the theory
of programming, because it deals only with
morphisms.
An object-free category is a partial binary algebra

M = (M, ;)
where members of M are morphisms satisfying the
following conditions:
 composition of morphisms is associative;
 for every morphism f there exist units u1 , u2 such

that u1 ; f and f ; u2 are defined;
 for any pair of units (u1 , u2) the class hom(u1 ,

u2) is a set.
For every category C we can construct
corresponding object-free category

MC = (homC , ;).

Functors can also be considered as objects.
There-fore it is possible to consider morphisms
between func-tors called natural transformations.

Definition 3: Let F,G: C Cµ be functors. A
natural transformation : F G from F to G is

 a class of morphisms (A: F(A) G(A))A C bet-

ween images of every object from C under
functors F and G, and

 for every morphism f:A B in C it holds
A ; G(f) = F(f) ; B

i.e. the diagram in Fig.2 commutes.

 F()
 F(A) F(B)

 A B

 G(A) G(B)
 G()

Fig. 2 Natural transformation

3. INSTITUTIONS

In this section we introduce useful logical and
mathematical notion that enables us to deal with
computer programming in the mathematically
tractable manner.

One of the most significant results of Software
Engineering is the division of a large scale program
into intelectually managable modules called data
abstractions. A data abstraction contains parameters
and local data needed for related procedures and
functions and enables to import and/or export them
from or to another data abstractions. We emphasize
here that the procedures and functions inside a data
abstraction, i.e. local ones of it, must have unique
properties to be these procedures and functions
executable in the computer memory.

We recall the algebraic definition of a scheme of
data abstraction that we can formulate in
a conservative extension of an axiomatic set theory.

54 About Metamathematics of Computer Programming

Definition 4: A signature is a triad =(S,O,P)
consisting of
 S, a linear ordered finite set of sorts;
 O, a finite set of (total or partial) function names

of the form f:<s1,«,sn> s, where n is the arity
of f, <s1,«sn> s is its profile and s1,«sn,s S;

 P, a finite set of predicate names of the form
p:<s1,«sn>, where n is the arity of p, s1,«sn S.

Let and µ be signatures. Signature morphism :

µ maps sorts, function names and predicate
names from to the corresponding ones from µ, so
that it preserves linear ordering of sorts, function
profiles and predicate arities.

Example 3: A simple signature for natural numbers
can be of the form

nat=(Snat,Onat,Pnat)
where
 Snat={nat}
 Onat={zero: nat, succ: nat nat}
 Pnat={_ _: <nat, nat>}

Now we briefly introduce the classical first order
predicate logic, which enables us to construct closed
formulae. Symbols of this logic are:
 variables of different sorts grouped into disjunct

classes;
 predicate names with their arities;
 function names with their profiles. Function

names with zero arities are constants of some
sorts;

 logical connectives , , , , ;
 quantifiers and ;
 auxiliary symbols, e.g. (and).

Terms are formed by repeated application of the
following two rules:
 every variable and constant is a term of some

sort;
 if f:<s1,«sn> s is a function name and t1,«tn

are terms of sorts s1,«sn, respectively, then
f(t1,«tn) is also a term of the sort s.

Formulae are created by repeated application of the
following three rules:
 if t1,«tn are terms of sorts s1,«sn, respectively,

and p:<s1,«sn> is a predicate name, then
p(t1,«tn) is a basic formula;

 if 1 and 2 are formulae, then also 1 2,
1, 1 2, 1 2 and 1 2 are formulae;

 if is a formula and x:s is a variable of a sort s,
then also (x) and (x) are formulae.

Every variable in a basic formula is free. Logical
connectives do not change the freeness of variables.
Quantifiers bind their variables, i.e. a variable x is
bound in the formulae (x) and (x) . A formula

 in which all its variables are bound is closed

formula. Closed formulae can be evaluated to be true
or false, i.e. they are sentences. For instance, the
following closed formula is sentence (more
precisely, the power axiom of the Zermelo-Fraenkel
axiomatic set theory):

(x)(y)(z)(z y (u)(u z u x))
because the variables x,y,z,u are bound.

Let be a signature. We suppose that its sorts,
function names and predicate names correspond
with some symbols of our logic. So, we can
formulate closed formulae evaluated to true
sentences, which consist of the predicate names
from . They characterize some well-formed
properties of function names from the signature.
Such closed formulae we call -sentences. The set
of true -sentences we denote by . So, we can
express a specification of a data abstraction as a pair

Spec =(,).

We construct the class SignObj of signatures. We

denote by homSign the set of all signature morphisms
between elements of this class, and by idSign the set
of all identical signature morphisms id : , for
every SignObj. Because the composition of
signature morphisms is closed in SignObj and
associative,

Sign=(SignObj, homSign, idSign, ;)

is the category of signatures.
For any signature from the category Sign we

can construct a -algebra as follows.

Definition 5: Let =(S, O, P) be a signature. A -
algebra is

A=(SA,OA,PA),
where
 SA is a class of data sets, such that the sorts from

S are bijectively mapped to the sets from SA.
 OA is the set of (total or partial) functions (alge-

braic operations) named by (total or partial)
function names from O. The domains and codo-
mains of the functions come from the profiles of
the corresponding function names from O.

 PA = as defined above. We call these true -
sentences also -axioms.

Example 4: One of the possible nat-algebra for the
signature nat introduced in the Example 3 can be

AN=(SN, ON, PN),
where
 SN= N is the set of natural numbers;
 ON contains the functions zeroN=0 and succN (n)

=n+1, for a variable n ranging over the set N;
 PN contains the relation defined by the true nat-

axiom

Acta Electrotechnica et Informatica No. 4, Vol. 2, 2002 55

(n1)(n2)(n2= succN (n1))

From -axioms we can derive other true closed
-formulae by the following way. Let be a set of
-axioms from a -algebra A. A -formula is

derivable from in A if there exists a sequence of
true closed -formulae

1, 2,«, k
such that
 k is , and
 every i , i<k, is either a -axiom or it can be

derived from the previous -formulae by the ap-
plication of the following two rules:
i) if 1 and 1 2 are true closed formulae,
then also 2 is true closed formula (modus
ponens);
ii) if is a true closed formula and x is any
variable, then also (x) is true closed formula
(generalization rule).

Such sequence we call a derivation for in A. If
there exists a derivation for a -formula in A, we
say that is satisfied in the -algebra A, denoted by
A � �� Such -algebra in which we still have
satisfied closed -formulae we call -model.

We define the functor Sen: Sign Set from the
category of signatures to the category of sets, which
assigns to every signature a set of true -sentences
and to every signature morphism : µ the
mapping trans-lation of -sentences that replaces
all symbols in a -sentence with their images
from µ under .

The class of the -models together with the set of
homomorphisms between them form the category
Mod() of -models.

Let : µ be a signature morphism and Aµ a
µ-model. A reduct of Aµ with respect to (w.r.t) is

the -model
Aµ| =(S¶A| , O¶A| , P¶A|)

where
 S¶A| is the class of data sets whose

corresponding sorts are counter images of the
sorts from Sµ w.r.t. ;

 O¶A| is the set of functions whose corresponding
function names are counter images of the
function names from Oµ w.r.t. ;

 P¶A| is the set of µ-sentences containing
predicates named by counter images of the
predicate names from Pµ w.r.t. .

Reduct functor _| : Mod(µ) Mod() from the
category of µ-models to the category of -models
w.r.t. the signature morphism : µ maps
 each µ-model Aµ to its reduct, the -model Aµ| ,

and
 each µ-homomorphism between µ-models to

-homomorphism between the corresponding
reducts.
We can define the functor Mod: Signopp Cat

from the dual category of signatures to the category

of small categories that assigns to every object the
category Mod() of -models and to every signature
morphism : µ the reduct functor _| : Mod(µ)

 Mod().
Now we have defined all neccessary components

of institution. An institution I is a quadruple

I=(Sign, Sen, Mod,)
where
 Sign is the category of signatures, Sen and Mod

are functors as defined above,
 is a set of satisfaction relations for every

signature from Sign,
 if : µ is a signature morphism from Sign

and is a -sentence, then it holds the following
equi-valence:

Aµ µ Sen()() Mod()(Aµ) �

i.e. is satisfied in the reduct Aµ| iff its translation
w.r.t. is satisfied in A.

We have shown that institutions meaningfuly

formalize the requirements specifications. But
during a design and execution of a program in
computer memory, we necessary construct the
following steps, too: a program, a machine code
before execution, and state of the computer memory
after terminating of a program. Can we formalize
also a program written in some programming
language, a program as a sequence of machine
instructions, and state of the memory after
terminating machine instructions sequence? Yes, the
classical mathematical logic, pure mathematics
based on an axiomatic set theory, Theoretical
Computer Science and Software Engineering are
able to formalize and prove statements about these
stages of programming process.

Our example of sequential automata confirms
that. But the programmer from the underlying
requirements specification really constructs
a program; a compiler, librarians, linkage editors and
loaders really construct the sequence of executable
machine instructions; and finally, a runtime
environment and operating system really execute
this sequence and stop it provided this program is
terminated. These Äconstructions³ are mappings of
institutions that also a programmer, who is well-
educated mathematician, can work out and he can
formalize true proved statements about the
correctness of the whole programming process. For
brevity, these mappings we will call arrows and we
suppose that they are mathematically tractable
entities. As a simple example (based on the similar
one in [5]) of such an arrow follows.

Example 5: Let I= (Sign, Sen, Mod,) be an
institution. We construct
 a functor : Sign Signµ creating a new

category Signµ of signatures so that we construct

56 About Metamathematics of Computer Programming

to every signature from Sign a signature µ and
to every signature morphism : 1 2 from
Sign a morphism µ: (1) (2). Because

(1) and (2) are signatures, µ is a signature
morphism. It is trivial to prove that so
constructed Signµ is the category with objects

() and category morphisms µ between them.
 a natural transformation Mod: Mod Modµ; ,

i.e. a set of morphisms

Mod: Mod() Modµ(())

for every signature from Sign, such that it
constructs for every -model A a ()-model Aµ,
and for every reduct functor _| it constructs a
reduct functor _| ().

We can formulate µ-sentences µ for every
signature µ from Signµ satisfied (i.e. proved) in µ-
models Aµ, Aµ µ µ , so that there exists
 a natural transformation Sen:Senµ; Sen i.e. a

set of morphisms

µ
Sen: Senµ(()) Sen()

for every signature from Sign; and for every -
model.
A from Mod() the following equivalence holds:

A µ

Sen (µ) Mod(A) µ () µ

The construction described above ensures that

Iµ=(Signµ, Senµ, Modµ, µ)

is an institution and we call the morphism

 =(, Mod, Sen): I Iµ

institution morphism.

4. CONCLUSION

Finally, we should like to emphasize that we are
returning to the Polya¶s idea of problem solving in
mathematics [6,7]. From the mathematics¶s point of
view the programming is such a problem solving. It
is clear in the case how the programmers work out
their programs respecting in every step their
requirements specifications. But it has been clear

also when the programmers create special but
correct programs for compilation, etc. We are sure
that the software crisis should be stepped over and
the mathematically well-educated programmers have
to construct correct programs.

REFERENCES

[1] J.Adimek, H.Herrlich, G.E.Strecker: Abstract
and Concrete Categories, Wiley& Sons, New
York, 1989

[2] J.Adimek, V.Trnkovi: Automata and Algebras
in Categories, Kluwer Academic Publishers
Group, Dordrecht, 1990

[3] B.Krieg-Br�ckner: Programmentwicklung durch
Spezifikation und Transformation, Research
Project KORSO, Univ.Bremen, 1994

[4] M.Hoffmann, B.Krieg-Br�ckner: Program
Development by Specification and
Transformation: Methodology-Language
Family -System, Springer, LNCS 680, 1993

[5] J.A.Goguen, R.M.Burstall: Introducing
institutions, Proc. Logics of Programming
Workshop, Springer, LNCS 164, 1984, pp.221-
256

[6] G.Polya: How to solve it?, Princeton Univ.
Press, 1946

[7] G.Polya: Mathematics and Plausible reasoning,
Princeton Univ.Press, 1954

[8] L.Schr|der: Categories: a free tour, In:
A.Melton, J.Koslowski, eds: Categorical
Perspectives, Birkhluser, Basel, 2001, pp.1-27

[9] P.Vop nka: Mathematics in the Alternative Set
Theory, Teubner Leipzig, 1979

[10] N.Wirth: Data structures + Algorithms = Prog-
rams, Prentice-Hall, Englewood Cliffs, 1975

BIOGRAPHY

9aleUie NoYit]Ni graduated (MSc.) at the Faculty of
Sciences, the University of P.J.âafirik, Koãice in
1976. She defended her PhD. work ³On Formal
Semantics of ANNA´ at the Hungarian Academy of
Sciences, Budapest, in 1989. Now she work as
assistant professor at the Department of Computers
and Informatics at the Technical University in
Koãice. Her scientific research is focusing on
theoretical computer science, especially the theory
of programming and its metamathematics, and the
semantics of programming and specification
languages.

