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SUMMARY 
This paper is devoted to manipulating the state in process functional language (3)/) using monadic approach [13,19], 

preserving at the same time the visibility of memory cells. Instead of exploiting just pure functional expressions, as it is done 
in Haskell, balanced binding of functional and state aspects of computation in 3)/ using monads is presented. Monadic 
approach in 3)/ is partial in the sense that it may be exploited at any hierarchical level of computation, concentrating to 
the points in which state manipulation and pure functional evaluation are switched. From this point of view, this paper 
contributes to a systematic joining of function and state aspects of computation. 
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1. INTRODUCTION 
 

Process functional paradigm is based on 
evaluation of processes that affects the memory cells 
by their applications [8,10]. 3)/ - an experimental 
process functional language, aimed to von Neumann 
machines is a successor of a dataflow language used 
to modeling and development of dataflow 
architecture [18]. 

Combining different programming paradigms 
into a singleton language, such as functional and 
imperative in Haskell with monads [14], or logic and 
functional in Oz [12,16], is a way in which a 
programming language is more expressible and 
reliable. On the other hand, such a combination may 
result to complicated and/or over abstracted 
language constructs, as well as to the need for 
underlying core language, which manipulates the 
architecture resources. Moreover, since the 
programming language itself does not solve a 
problem of a gap between modeling the system and 
its programming [3], the necessity of integrating the 
computer architecture resources, programming, 
specification and modeling of a designed system is 
the task of high interest. 

In contrast to Haskell with monads, 3)/
variables are visible memory cells in explicit, 
implicit and object environment [11,15]. 3)/ arrays 
are  partial spatial processes manipulated using array 
comprehensions akin to list comprehensions. 3)/
exploits both parametric polymorphism and abstract 
typing [17]. 

3)/ models any imperative language [9]. The 
difference between 3)/ as an implementation 
language and 3)/ as a programming language is as 
follows: while the programming language must be 
deterministic, the implementation language may be 
non-deterministic.  

 
This work was supported by VEGA Grant No. 

1/8134/01: Binding the Process Functional 
Language to   MPI. 

Similarly as the non-deterministic grammar may 
produce the deterministic language, 3)/ provides 
some degree of freedom, considering different 
aspects of computation. This, of course, is not to say 
that it covers all potential aspects.   

In this paper we will concentrate just on two 
aspects of computation - the function and the state, 
joined synchronously. We will show that a 3)/
explicit environment variable - a memory cell - is 
visible, even in a monad. Monads comprising visible 
computational spaces, as we hope, are useful when a 
memory is the subject of the design. 
 
2. HASKELL  MONAD 
 

A monad is a triple (M,unitM,bindM) consisting 
of a type constructor M and a pair of polymorphic 
functions [19]. 

 
unitM :: a -> M a 
bindM :: M a -> (a -> M b) -> M b 

 
These functions must satisfy three laws, as follows. 
 
Left unit:       (unitM a) `bindM` k = k a 
Right unit:     m `bindM` unitM = m 
 
Associative: 
   m `bindM` ( a. (k a) `bindM` ( b. h b))  
   = (m `bindM` ( a. k a)) `bindM` ( b. h b) 
 
As an introductory example, let us consider a pure 
functional solution to a problem of counting the 
number of operations Add in expression 

  
Add (Mul (Num 3) (Num 4))  
    (Add (Num 2) (Num 6)) 
 
in terms of  algebraic data type as follows 
 
data Etree = Num Int  
           | Add Etree Etree  
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           | Mul Etree Etree 

Example 2.1 Pure functional solution 

expr (Num x) = x 
expr (Add x y) = expr x + expr y 
expr (Mul x y) = expr x * expr y 

count (Num x) = 0 
count (Add x y) = count x + count y 
                  + 1 
count (Mul x y) = count x + count y 

main = "Value: " ++ show (expr t) 
       ++ "  State: "  
       ++ show (count t) 
  where t = Add (Mul (Num 3)  
                     (Num 4))  
                (Add (Num 2)  
                     (Num 6)) 

Evaluating main the result Value:20 State:2 
is obtained, since the value of expression is 20 and 
Add occurs in this expression two times. The 
disadvantage is that the expression tree is traced two 
times and the separate (although structurally very 
similar) function count must be defined.  

A monadic (and purely functional) solution of 
the same problem in Haskell is introduced in the 
Example 2.2. It is based on the definition of monad 
(S,unitS,bindS) and on the systematic transformation 
of functions expr and count into a monadic form, 
in which they produce functions (of the type Int -> 
(a, Int)), instead of values.  

 
Example 2.2 Monadic solution in Haskell  
 
type S a = Int -> (a, Int) 
 
unitS :: a -> S a 
unitS a = g where g s = (a,s) 
 
bindS :: S a -> (a -> S b) -> S b  
m `bindS` k = g  
 where g s0 = k a s1 
        where (a,s1) = m s0 
      
expr (Num x)   = unitS (Num x) 
expr (Add x y) = expr x `bindS` k 
 where  
  k (Num i) = expr y `bindS` h 
   where  
    h (Num j) = count `bindS` r 
       where  
        r () = unitS (Num (i+j)) 
expr (Mul x y) = expr x `bindS` k 
 where  
  k (Num i) = expr y `bindS` h 
   where  
    h (Num j) = unitS (Num (i*j)) 
 
count :: S () 
count = g where g s = ((),s+1) 

 
showt (Num i) = show i 
 
main = "Value: " ++ showt t ++  
       "  State: " ++ show s 
 where  
  (t,s) = (expr  
           (Add (Mul (Num 3)  
                     (Num 4))  
                (Add (Num 2)  
                     (Num 6)) 
           ) ) 0 
 

The solution above is adopted from [19], 
excluding lambda abstractions and let expressions, 
and replacing them by explicit local functions. 
Nevertheless, it is still not so easy to realize, in 
which cell (or cells) the count of operations Add is 
incremented. Monads in Haskell support stateful 
computation using purely functional approach, 
hiding memory cells to a programmer, and 
performing guaranteed sequencing of actions by 
application dependence. Since architecture resources 
in Haskell are affected indirectly via C routines 
calls, there is no need (and no opportunity) to affect 
them by a programmer explicitly. 

In contrast to Haskell, 3)/ is a language, which 
associates the functional abstraction with the 
physical resources of computer architecture. Being 
the resources the subject of the system design, the 
visibility of memory cells is crucial. 

In the next sections, we will define a monad 
(M,unitM,bindM) comprising a single visible 
memory cell in terms of 3)/, but first let us 
introduce the essential concept of 3)/ memory 
variables. 

 
3. 3)/ VARIABLES 

 
The definitions introduced in this section are not 

a part of 3)/ script. To simplify the notation, we 
will use v for a variable as a memory cell, and v[m] 
for a variable containing a well-defined value m. If a 
variable is not initialized, it contains undefined value 

, which is written as v[ ]. A variable v in figures is 
designated by large circle, containing either  or 
defined values marked by small circles. 

The crucial for understanding 3)/ approach is 
two-fold semantics of a variable v. From one point 
of view, it is a cell, as mentioned above. At the same 
time, the environment variable is a mapping  
 

[ ]v a :: a a  (1) 
 
which may be read as follows: An environment 
variable v is a cell comprising a value of any type a, 
including  (a ), and it is mapping from values of 
the type a including control value () ( a~ ) to the 
values of the type a. Corresponding to input arc for 
argument and output arc to the value of the mapping 
above, see Fig.1 and Fig.2 we distinct the situation, 
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when the argument is a data value and when it is the 
control value. 

Let the argument is a data value. Then the 
definition of an environment variable is given by 
two equations (u.1), and (u.2).  
 

[ ] [ ]v n n n  (u.1) 
[ ] [ ]v m n n n  (u.2) 

According to (u.1), see the Fig. 1a), when v
containing undefined value is applied to a data value 
n, the output value is n[n], which means that the 
value n is produced as a result, and it is assigned to a 
variable v before (expressed by [n]). It means that 
the value n is assigned to yet not initialized memory 
cell v and then pushed onto the stack. The equation 
(u.2), see Fig. 1b) differs just in that the incoming 
value replaces old value m, but both cases mean 
clearly the update of a cell v, changing the definition 
to v[n]. 

According to the definition above, the update has 
its functional aspect - the identity as well as its state 
transition aspect - that may be expressed by v[ ]  
v[n], and v[m]  v[n], respectively.     

 

 
 
Fig. 1  The update of environment variable v

 
 

Now, let the argument is the control value (), 
marked by a black dot in Fig. 2. 

The definition of the access is given by the 
equations (a.1) and (a.2) as follows 
 

[ ] () [ ]v  (a.1) 
[ ] () [ ]v m m m  (a.2) 
 

In this case the value in a variable v is just 
pushed onto the stack. 

 

 

Fig. 2  The access of environment variable v. 
 
 

The functional aspect is expressed by a 
"constant", but, since v may change its definition 
during computation, this constant is generally 
referentially non-transparent. On the other hand the 
state aspect is unaffected, since the state transitions 
are  v[ ]  v[ ], and v[m]  v[m], respectively. 

We attend that a variable never occurs in 3)/
source expressions. Instead of that, binding 
environment variables to pure functional arguments 
is the matter of 3)/ type definitions of processes 
and environmental applications are performed 
implicitly. This binding is discussed in the next 
section. It may be also noticed that the case (a.1) 
must be prevented, otherwise (see the Fig. 2a)) an 
expression is evaluated using undefined value. It is 
possible to detect the use of undefined values during 
the type checking of 3)/ programs, but a monadic 
approach is the second alternative. Although 3)/
variables are related to mutable abstract types [4], 
the above explanation in terms of control-driven 
dataflow [10] seems to be more "natural" to a user.   

 
 

4. ENVIRONMENT BINDING  
 

In 3)/ source script, the environment variables 
are bound to a set of processes by their type 
definitions. Suppose the next definition of ua, 
similar to identity function, which type definition 
however has argument type v a, instead of a. The 
type expression v a is a syntactic shortcut for type 
expression [ ]v a :: a a , binding the mapping 

[ ]v a  a   to a purely functional argument of the type 
a. Hence, ua is not a simple identity but it is rather 
the composition of a memory cell v as a function 
and the identity id, see the Fig. 3. 

 
ua :: v a -> a 
ua x = x 
 

Then the value of (ua 3) is 3, updating the cell 
v by the value 3 before, and the value of (ua ()) 
is a value having been assigned by the last update 
before. It means that ua represents an effect process 
which integrates both update and access actions 
depending on either data or control as an argument.  

If v occurs in the type definitions of multiple 
processes, they share it, and then it is probably more 
appropriate to define type synonym, in the form 

 
W\SH  V a =  v a   
 
changing the type definition as follows 
 
ua  :: V a -> a 
ua  x = x 
 
It is even possible to associate a variable v with a 
physical memory location, in the form as follows:  
 
W\SH  V a =  v  a DW #1277746 
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if needed, which means that the cell v is located at 
memory address #1277746. 

Although the flexibility of such an approach may 
be criticized, potentially 3)/ does not require any 
target language except a machine language. 
Therefore 3)/ is a wide-range language, which 
benefits from well-disciplined functional approach 
in programming, not disqualifying architecture 
resources from the design. 

 A programmer may even think about the process 
ua, as defined internally as follows 
 
ua  :: a -> a 
ua  x = x 
 
If ua above is applied to an argument, it invokes an 
invisible application of a memory variable to this 
argument. For example, the evaluation of source 
form (ua 3) is internally performed as (ua 
(v[m ] 3)) and a source application (ua ()), 
is internally performed as (ua (v[m] ())). 
 

 
5. VISIBLE VARIABLE MONAD  

 
In 3)/, there is a natural boundary between 

purely functional evaluation and the referentially 
non-transparent imperative execution: pure functions 
have no environment variables used in their optional 
type definitions while processes have at least one 
environment variable used in their obligatory type 
definitions. 

While 3)/ functions may be higher order, 3)/ 
processes are first order, which implies possible 
compile time transformations into the internal form. 

In particular, monadic functions unitM and 
bindM prevent the need for considering call 
dependency in expressions, since they provide a 
uniform interface between purely functional 
evaluation and imperative computation. Also for this 
reason we are interested in an ability for monadic 
3)/ form, preserving however the visibility of 
memory variables. 

Let the type M is defined as follows  
 

type  M a =  v a -> a 
 

comprising variable v. Then a process ua may be 
defined, as follows  
 
ua  :: M a  
ua  x = x 
 
which, when applied, performs imperative action - 
either the update or the access of a cell v as 
mentioned above. The result is of the type a. 

Now, let c is a constant function, which takes 
any value of the type a and produces the process ua 
(i.e. the constant such as the entry address of ua 
body).  
c :: a -> M a 
c x = ua

The value of referentially transparent function c is 
referentially non-transparent action ua performed on 
the variable v. 

The aim of unitM is to take a value into its 
corresponding representation in a monad [19]. In 
terms of 3)/ the aim of unitM is to assign a value 
to the variable v by application of ua, and then to 
produce the action ua. It is easy to see that the value 
of application c (ua x) for value x is the constant 
- the computation of the type M a. It is exactly what 
is needed for unitM. Then we have 
 
unitM :: a -> M a 
unitM x = c (ua x) 
 
illustrated in the Fig. 3. 

 

Fig. 3  Function UnitM 
 

A single argument function defined by an expression 
ek[x] on right hand side of its definition using the 
argument value x would evaluate to the value 
ek[x]. The function k in monadic form is defined 
by the application (unitM ek[x]), i.e. by the 
application (c(uaek[x])) which means that the 
value of ek[x] (provided that it is of data type) is 
just assigned to v and the result is the computation 
ua. 

If we define two monadic functions, say h and k 
as follows 

 
h :: a -> M b 
h x = unitM eh[x] 
 

k :: a -> M b 
k x = unitM ek[x] 

 
it is substantial that  applying them elsewhere in a 
script they affect the same variable v and they 
produce the same constant ua. 

The last step is to define the function bindM, 
which, when applied, request the application of a 
monadic function, such as unitM, k, h, yielding its 
first argument m which is the constant ua. The 
second argument is not an application but rather a 
monadic function k as a value. In terms of Haskell, 
this function is applied to the monad M a producing 
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monad M b. In terms of 3)/, the function k is 
applied to the old value of environment variable v, 
assigning the result to v and then producing the 
value of m, which is equal to ua. The old value is 
clearly selected by expression m(), (since 
m()=ua()). 

In this way the referential transparency of 
bindM is preserved, since both arguments and value 
(m=ua) are constants. On the other hand we have the 
activation mechanism visible, since it is nothing 
more than the use of control value.        

The function bindM is defined as follows and it 
is depicted in the Fig. 4. 

 
bindM :: M a -> (a -> M b) -> M b 
bindM m k = k (m ()) 

 
Formal proof that (M,unitM,bindM) is a monad 

is introduced below. In the proof of left and right 
unit we will consider the value changed in v in 
brackets. 
 
Proof 5.1 
 
Left unit law: 
 
(unitM a) `bindM` k                           v[ ] 
    = k ((unitM a) ()) 
    = k ((c (ua a)) ()) 
     k ((c a) ())                                  v[a] 
     k (ua ())                                     v[a] 
      k a                                            v[a] 
 
It means that k is evaluated using the argument a 
stored in v, as required. 
 
Right unit law: 
 
Suppose m=c(ua a), i.e. v[a] 
 
m `bindM` unitM                              v[a] 
    = unitM (m ())                               v[a] 
     unitM a                                    v[a] 
     m                                              v[a]  
 
It means that $unitM$ does not change the monad, 
as required. 
 
Associative law: 
 
L = m `bindM` ( a. (k a) `bindM` ( b. h b)) 
    = ( a. (k a) `bindM` ( b. h b)) (m ()) 
    = ( a. ( b. h b) ( (k a) ())) (m ()) 
      ( b. h b) ( (k (m ())) ()) 
      h ((k (m ())) ()) 
  
R = (m `bindM` ( a. k a)) `bindM` ( b. h b) 
    = ( b. h b) ((m `bindM` ( a. k a)) ()) 
    = ( b. h b) ((( a. k a) (m ())) ()) 
     h ((( a. k a) (m ())) ()) 

     h ((k (m ())) ()) 
 
Proving associative law, both its sides are reduced to 
the same application dependence - the expression h 
((k (m ())) ()). It means that the order in which the 
arguments of bindM are evaluated is not significant. 

 

 
Fig. 4  Function bindM 

 
 

6. PARTIAL MONADIC APPROACH  
 

In this section we present 3)/ partial monadic 
solution and "pure" 3)/ solution of the same task as 
in Examples 2.1 and 2.2, respectively.  

Our goal is to perform minimum changes in  
expr defined in Example 2.1. In Example 6.1 and 
6.2, the visible environment variable s in the type 
definition S has crucial role, since it is memory cell, 
in which the number of Adds is incremented. Since 
the operation Add affects the state, and is performed 
by operation (+), it is sufficient to change its 
definition `iadd`, as can be seen below. 

 
Example 6.1 Partial monadic 3)/ solution 
 
type S a = s a -> a  
 
ua x = x 
c x = ua 
 
unitS :: Int -> S Int 
unitS x = c (ua x) 
 
bindS :: S Int -> (Int -> S Int)  
              -> S Int 

bindS m k = k (m ()) 
 
incr :: Int -> S Int 



Acta Electrotechnica et Informatica  No. 1, Vol. 3, 2003 41 

incr x = unitS (x + 1) 

expr (Num x)   = x 
expr (Add x y) = expr x  
                `iadd`  
                expr y 

 where  
  iadd  = add(unitS 5 `bindS` incr)  
  add _ = (+) 
expr (Mul x y) = expr x * expr y 

e _ = expr (Add (Mul (Num 3)  
                    (Num 4))  

           (Add (Num 2) (Num 6)))  

st x = (x, unitS () ()) 

main = "Value: " ++ show t ++  
       "  State: " ++ show s 
  where 
    (t,s) = (st (e (unitS 0))) 

In contrast to Haskell form, the appropriate 
sequencing must be guaranteed by explicit 
application dependence. It means, that unitS 0 
must be evaluated first initializing the variable to 0, 
then the expression is evaluated e(unitS 0) and 
then the pair containing both the value of expression 
and the state is constructed  
(by st (e (unitS 0)), see the pair (t,s) 
definition in main. 

As a result, the variable s is visible in monad 
(S,unitS,bindS), and minimal change of 
expr has been obtained. 

The 3)/ solution not using monad is introduced 
in the Example 6.2. This solution is equivalent to 
monadic 3)/ one, except that we may use the value 
of ua 0 application instead of c (ua 0) when 
evaluating the arguments for functions add and e 
that argument value, marked by underscore 
character, is not significant. 

 
Example 6.2 Pure 3)/ solution 
 
ua :: s a -> a 
ua x = x 
 
expr (Num x)   = x 
expr (Add x y) = expr x  
                 `iadd`  
                 expr y 
  where  
    iadd  = add (ua () + 1)  
    add _ = (+) 
expr (Mul x y) = expr x * expr y 
 
e _ = expr (Add (Mul (Num 3)  
                     (Num 4))  
           (Add (Num 2) (Num 6)))  
 
st x = (x, ua ()) 
     

main = "Value: " ++ show t ++  
       "  State: " ++ show s 
  where 
    (t,s) = (st (e (ua 0))) 
 

In both cases above the state is changed at two 
different hierarchical levels of computation - the 
initialization of variable s and reading the final state 
is performed on the top level and the incrementing is 
performed inside a purely functional grain defined 
by pure function expr (since `iadd` is 
referentially transparent). 

 
7. CONCLUSION 

A partial monadic approach in 3)/ is not so 
restrictive to a programmer as Haskell approach, 
since it may be applied at any level of computation 
separately. The environment variables are visible 
and the memory organization may be the subject of 
software design. For the limited scope of this paper 
it was however not possible to introduce here more 
advanced computational spaces. 

Nevertheless, two aspects of computation - the 
function and the state - are bound in a very 
systematic way. In terms of aspect oriented 
programming (AOP) [6], `iadd` is a primitive and 
synchronous case of a join point which has two-fold 
semantics - it is an addition operation considering 
functional aspect and it is count incrementing 
operation considering state aspect. 

In AOP, instead of manipulating different 
aspects of computation in a single program 
producing tangled code, each aspect is described 
separately, considering join points in which the 
aspects cross-cuts. Then, in principle, the scripts are 
composed by automatic tool, called weaver, 
producing the implementation with respect to all 
aspects having been considered. AspectJ, as an 
extension to Java [5], supports the ideas of AOP in 
praxis. There are still many problems open.  It is 
argued, that AOP using AspectJ fails for transition 
systems [7]. On the other hand, formal descriptions 
for aspect programs using process algebras [1] as 
well as denotational semantics for recursive 
procedure calls [20] have been published. 
Considering a set of domain specific languages for 
different aspects in AspectCool [2] seems to be 
better alternative for AOP, but multi-language AOP 
is not so attractive for a user as single language 
concept.  

Our idea to exploiting 3)/ as aspect oriented 
modeling language is as follows. Having a single 
language L in 3)/ experimental form, it is 
necessary to derive its subsets {Li | i=1«n}, adding 
a minimum new syntactic constructs, such that all 
languages Li(Ai) (Li with respect of aspect Ai) are 
deterministic, while  Lj(Ak) are non-deterministic for 
all j  k. Then, instead of weaving scripts we may 
think about weaving partially deterministic subsets 
of a single language producing its deterministic 
implementation. 
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From this point of view, this paper contributes to 
a systematic joining of function and state aspects of 
computation in a synchronous way.       
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