
36 Acta Electrotechnica et Informatica No. 1, Vol. 3, 2003

PARTIAL MONADIC APPROACH IN PROCESS FUNCTIONAL LANGUAGE

Jin KOLLÈR
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics,

Technical University of Koãice, Letni 9, 042 00 Koãice, tel. 095/602 4179, E-mail: Jan.Kollar#tuke.sk

SUMMARY
This paper is devoted to manipulating the state in process functional language (3)/) using monadic approach [13,19],

preserving at the same time the visibility of memory cells. Instead of exploiting just pure functional expressions, as it is done
in Haskell, balanced binding of functional and state aspects of computation in 3)/ using monads is presented. Monadic
approach in 3)/ is partial in the sense that it may be exploited at any hierarchical level of computation, concentrating to
the points in which state manipulation and pure functional evaluation are switched. From this point of view, this paper
contributes to a systematic joining of function and state aspects of computation.

Keywords: Programming paradigms, imperative functional programming, aspect oriented programming, implementation
principles, programming environments, control driven dataflow, referential transparency, side effects

1. INTRODUCTION

Process functional paradigm is based on
evaluation of processes that affects the memory cells
by their applications [8,10]. 3)/ - an experimental
process functional language, aimed to von Neumann
machines is a successor of a dataflow language used
to modeling and development of dataflow
architecture [18].

Combining different programming paradigms
into a singleton language, such as functional and
imperative in Haskell with monads [14], or logic and
functional in Oz [12,16], is a way in which a
programming language is more expressible and
reliable. On the other hand, such a combination may
result to complicated and/or over abstracted
language constructs, as well as to the need for
underlying core language, which manipulates the
architecture resources. Moreover, since the
programming language itself does not solve a
problem of a gap between modeling the system and
its programming [3], the necessity of integrating the
computer architecture resources, programming,
specification and modeling of a designed system is
the task of high interest.

In contrast to Haskell with monads, 3)/
variables are visible memory cells in explicit,
implicit and object environment [11,15]. 3)/ arrays
are partial spatial processes manipulated using array
comprehensions akin to list comprehensions. 3)/
exploits both parametric polymorphism and abstract
typing [17].

3)/ models any imperative language [9]. The
difference between 3)/ as an implementation
language and 3)/ as a programming language is as
follows: while the programming language must be
deterministic, the implementation language may be
non-deterministic.

This work was supported by VEGA Grant No.

1/8134/01: Binding the Process Functional
Language to MPI.

Similarly as the non-deterministic grammar may
produce the deterministic language, 3)/ provides
some degree of freedom, considering different
aspects of computation. This, of course, is not to say
that it covers all potential aspects.

In this paper we will concentrate just on two
aspects of computation - the function and the state,
joined synchronously. We will show that a 3)/
explicit environment variable - a memory cell - is
visible, even in a monad. Monads comprising visible
computational spaces, as we hope, are useful when a
memory is the subject of the design.

2. HASKELL MONAD

A monad is a triple (M,unitM,bindM) consisting
of a type constructor M and a pair of polymorphic
functions [19].

unitM :: a -> M a
bindM :: M a -> (a -> M b) -> M b

These functions must satisfy three laws, as follows.

Left unit: (unitM a) `bindM` k = k a
Right unit: m `bindM` unitM = m

Associative:
 m `bindM` (a. (k a) `bindM` (b. h b))
 = (m `bindM` (a. k a)) `bindM` (b. h b)

As an introductory example, let us consider a pure
functional solution to a problem of counting the
number of operations Add in expression

Add (Mul (Num 3) (Num 4))
 (Add (Num 2) (Num 6))

in terms of algebraic data type as follows

data Etree = Num Int
 | Add Etree Etree

Acta Electrotechnica et Informatica No. 1, Vol. 3, 2003 37

 | Mul Etree Etree

Example 2.1 Pure functional solution

expr (Num x) = x
expr (Add x y) = expr x + expr y
expr (Mul x y) = expr x * expr y

count (Num x) = 0
count (Add x y) = count x + count y
 + 1
count (Mul x y) = count x + count y

main = "Value: " ++ show (expr t)
 ++ " State: "
 ++ show (count t)
 where t = Add (Mul (Num 3)
 (Num 4))
 (Add (Num 2)
 (Num 6))

Evaluating main the result Value:20 State:2
is obtained, since the value of expression is 20 and
Add occurs in this expression two times. The
disadvantage is that the expression tree is traced two
times and the separate (although structurally very
similar) function count must be defined.

A monadic (and purely functional) solution of
the same problem in Haskell is introduced in the
Example 2.2. It is based on the definition of monad
(S,unitS,bindS) and on the systematic transformation
of functions expr and count into a monadic form,
in which they produce functions (of the type Int ->
(a, Int)), instead of values.

Example 2.2 Monadic solution in Haskell

type S a = Int -> (a, Int)

unitS :: a -> S a
unitS a = g where g s = (a,s)

bindS :: S a -> (a -> S b) -> S b
m `bindS` k = g
 where g s0 = k a s1
 where (a,s1) = m s0

expr (Num x) = unitS (Num x)
expr (Add x y) = expr x `bindS` k
 where
 k (Num i) = expr y `bindS` h
 where
 h (Num j) = count `bindS` r
 where
 r () = unitS (Num (i+j))
expr (Mul x y) = expr x `bindS` k
 where
 k (Num i) = expr y `bindS` h
 where
 h (Num j) = unitS (Num (i*j))

count :: S ()
count = g where g s = ((),s+1)

showt (Num i) = show i

main = "Value: " ++ showt t ++
 " State: " ++ show s
 where
 (t,s) = (expr
 (Add (Mul (Num 3)
 (Num 4))
 (Add (Num 2)
 (Num 6))
)) 0

The solution above is adopted from [19],
excluding lambda abstractions and let expressions,
and replacing them by explicit local functions.
Nevertheless, it is still not so easy to realize, in
which cell (or cells) the count of operations Add is
incremented. Monads in Haskell support stateful
computation using purely functional approach,
hiding memory cells to a programmer, and
performing guaranteed sequencing of actions by
application dependence. Since architecture resources
in Haskell are affected indirectly via C routines
calls, there is no need (and no opportunity) to affect
them by a programmer explicitly.

In contrast to Haskell, 3)/ is a language, which
associates the functional abstraction with the
physical resources of computer architecture. Being
the resources the subject of the system design, the
visibility of memory cells is crucial.

In the next sections, we will define a monad
(M,unitM,bindM) comprising a single visible
memory cell in terms of 3)/, but first let us
introduce the essential concept of 3)/ memory
variables.

3. 3)/ VARIABLES

The definitions introduced in this section are not

a part of 3)/ script. To simplify the notation, we
will use v for a variable as a memory cell, and v[m]
for a variable containing a well-defined value m. If a
variable is not initialized, it contains undefined value

, which is written as v[]. A variable v in figures is
designated by large circle, containing either or
defined values marked by small circles.

The crucial for understanding 3)/ approach is
two-fold semantics of a variable v. From one point
of view, it is a cell, as mentioned above. At the same
time, the environment variable is a mapping

[]v a :: a a (1)

which may be read as follows: An environment
variable v is a cell comprising a value of any type a,
including (a), and it is mapping from values of
the type a including control value () (a~) to the
values of the type a. Corresponding to input arc for
argument and output arc to the value of the mapping
above, see Fig.1 and Fig.2 we distinct the situation,

38 Partial Monadic Approach in Process Functional Language

when the argument is a data value and when it is the
control value.

Let the argument is a data value. Then the
definition of an environment variable is given by
two equations (u.1), and (u.2).

[] []v n n n (u.1)
[] []v m n n n (u.2)

According to (u.1), see the Fig. 1a), when v
containing undefined value is applied to a data value
n, the output value is n[n], which means that the
value n is produced as a result, and it is assigned to a
variable v before (expressed by [n]). It means that
the value n is assigned to yet not initialized memory
cell v and then pushed onto the stack. The equation
(u.2), see Fig. 1b) differs just in that the incoming
value replaces old value m, but both cases mean
clearly the update of a cell v, changing the definition
to v[n].

According to the definition above, the update has
its functional aspect - the identity as well as its state
transition aspect - that may be expressed by v[]
v[n], and v[m] v[n], respectively.

Fig. 1 The update of environment variable v

Now, let the argument is the control value (),
marked by a black dot in Fig. 2.

The definition of the access is given by the
equations (a.1) and (a.2) as follows

[] () []v (a.1)
[] () []v m m m (a.2)

In this case the value in a variable v is just
pushed onto the stack.

Fig. 2 The access of environment variable v.

The functional aspect is expressed by a
"constant", but, since v may change its definition
during computation, this constant is generally
referentially non-transparent. On the other hand the
state aspect is unaffected, since the state transitions
are v[] v[], and v[m] v[m], respectively.

We attend that a variable never occurs in 3)/
source expressions. Instead of that, binding
environment variables to pure functional arguments
is the matter of 3)/ type definitions of processes
and environmental applications are performed
implicitly. This binding is discussed in the next
section. It may be also noticed that the case (a.1)
must be prevented, otherwise (see the Fig. 2a)) an
expression is evaluated using undefined value. It is
possible to detect the use of undefined values during
the type checking of 3)/ programs, but a monadic
approach is the second alternative. Although 3)/
variables are related to mutable abstract types [4],
the above explanation in terms of control-driven
dataflow [10] seems to be more "natural" to a user.

4. ENVIRONMENT BINDING

In 3)/ source script, the environment variables
are bound to a set of processes by their type
definitions. Suppose the next definition of ua,
similar to identity function, which type definition
however has argument type v a, instead of a. The
type expression v a is a syntactic shortcut for type
expression []v a :: a a , binding the mapping

[]v a a to a purely functional argument of the type
a. Hence, ua is not a simple identity but it is rather
the composition of a memory cell v as a function
and the identity id, see the Fig. 3.

ua :: v a -> a
ua x = x

Then the value of (ua 3) is 3, updating the cell
v by the value 3 before, and the value of (ua ())
is a value having been assigned by the last update
before. It means that ua represents an effect process
which integrates both update and access actions
depending on either data or control as an argument.

If v occurs in the type definitions of multiple
processes, they share it, and then it is probably more
appropriate to define type synonym, in the form

W\SH V a = v a

changing the type definition as follows

ua :: V a -> a
ua x = x

It is even possible to associate a variable v with a
physical memory location, in the form as follows:

W\SH V a = v a DW #1277746

Acta Electrotechnica et Informatica No. 1, Vol. 3, 2003 39

if needed, which means that the cell v is located at
memory address #1277746.

Although the flexibility of such an approach may
be criticized, potentially 3)/ does not require any
target language except a machine language.
Therefore 3)/ is a wide-range language, which
benefits from well-disciplined functional approach
in programming, not disqualifying architecture
resources from the design.

 A programmer may even think about the process
ua, as defined internally as follows

ua :: a -> a
ua x = x

If ua above is applied to an argument, it invokes an
invisible application of a memory variable to this
argument. For example, the evaluation of source
form (ua 3) is internally performed as (ua
(v[m] 3)) and a source application (ua ()),
is internally performed as (ua (v[m] ())).

5. VISIBLE VARIABLE MONAD

In 3)/, there is a natural boundary between

purely functional evaluation and the referentially
non-transparent imperative execution: pure functions
have no environment variables used in their optional
type definitions while processes have at least one
environment variable used in their obligatory type
definitions.

While 3)/ functions may be higher order, 3)/
processes are first order, which implies possible
compile time transformations into the internal form.

In particular, monadic functions unitM and
bindM prevent the need for considering call
dependency in expressions, since they provide a
uniform interface between purely functional
evaluation and imperative computation. Also for this
reason we are interested in an ability for monadic
3)/ form, preserving however the visibility of
memory variables.

Let the type M is defined as follows

type M a = v a -> a

comprising variable v. Then a process ua may be
defined, as follows

ua :: M a
ua x = x

which, when applied, performs imperative action -
either the update or the access of a cell v as
mentioned above. The result is of the type a.

Now, let c is a constant function, which takes
any value of the type a and produces the process ua
(i.e. the constant such as the entry address of ua
body).
c :: a -> M a
c x = ua

The value of referentially transparent function c is
referentially non-transparent action ua performed on
the variable v.

The aim of unitM is to take a value into its
corresponding representation in a monad [19]. In
terms of 3)/ the aim of unitM is to assign a value
to the variable v by application of ua, and then to
produce the action ua. It is easy to see that the value
of application c (ua x) for value x is the constant
- the computation of the type M a. It is exactly what
is needed for unitM. Then we have

unitM :: a -> M a
unitM x = c (ua x)

illustrated in the Fig. 3.

Fig. 3 Function UnitM

A single argument function defined by an expression
ek[x] on right hand side of its definition using the
argument value x would evaluate to the value
ek[x]. The function k in monadic form is defined
by the application (unitM ek[x]), i.e. by the
application (c(uaek[x])) which means that the
value of ek[x] (provided that it is of data type) is
just assigned to v and the result is the computation
ua.

If we define two monadic functions, say h and k
as follows

h :: a -> M b
h x = unitM eh[x]

k :: a -> M b
k x = unitM ek[x]

it is substantial that applying them elsewhere in a
script they affect the same variable v and they
produce the same constant ua.

The last step is to define the function bindM,
which, when applied, request the application of a
monadic function, such as unitM, k, h, yielding its
first argument m which is the constant ua. The
second argument is not an application but rather a
monadic function k as a value. In terms of Haskell,
this function is applied to the monad M a producing

40 Partial Monadic Approach in Process Functional Language

monad M b. In terms of 3)/, the function k is
applied to the old value of environment variable v,
assigning the result to v and then producing the
value of m, which is equal to ua. The old value is
clearly selected by expression m(), (since
m()=ua()).

In this way the referential transparency of
bindM is preserved, since both arguments and value
(m=ua) are constants. On the other hand we have the
activation mechanism visible, since it is nothing
more than the use of control value.

The function bindM is defined as follows and it
is depicted in the Fig. 4.

bindM :: M a -> (a -> M b) -> M b
bindM m k = k (m ())

Formal proof that (M,unitM,bindM) is a monad

is introduced below. In the proof of left and right
unit we will consider the value changed in v in
brackets.

Proof 5.1

Left unit law:

(unitM a) `bindM` k v[]
 = k ((unitM a) ())
 = k ((c (ua a)) ())
 k ((c a) ()) v[a]
 k (ua ()) v[a]
 k a v[a]

It means that k is evaluated using the argument a
stored in v, as required.

Right unit law:

Suppose m=c(ua a), i.e. v[a]

m `bindM` unitM v[a]
 = unitM (m ()) v[a]
 unitM a v[a]
 m v[a]

It means that $unitM$ does not change the monad,
as required.

Associative law:

L = m `bindM` (a. (k a) `bindM` (b. h b))
 = (a. (k a) `bindM` (b. h b)) (m ())
 = (a. (b. h b) ((k a) ())) (m ())
 (b. h b) ((k (m ())) ())
 h ((k (m ())) ())

R = (m `bindM` (a. k a)) `bindM` (b. h b)
 = (b. h b) ((m `bindM` (a. k a)) ())
 = (b. h b) (((a. k a) (m ())) ())
 h (((a. k a) (m ())) ())

 h ((k (m ())) ())

Proving associative law, both its sides are reduced to
the same application dependence - the expression h
((k (m ())) ()). It means that the order in which the
arguments of bindM are evaluated is not significant.

Fig. 4 Function bindM

6. PARTIAL MONADIC APPROACH

In this section we present 3)/ partial monadic
solution and "pure" 3)/ solution of the same task as
in Examples 2.1 and 2.2, respectively.

Our goal is to perform minimum changes in
expr defined in Example 2.1. In Example 6.1 and
6.2, the visible environment variable s in the type
definition S has crucial role, since it is memory cell,
in which the number of Adds is incremented. Since
the operation Add affects the state, and is performed
by operation (+), it is sufficient to change its
definition `iadd`, as can be seen below.

Example 6.1 Partial monadic 3)/ solution

type S a = s a -> a

ua x = x
c x = ua

unitS :: Int -> S Int
unitS x = c (ua x)

bindS :: S Int -> (Int -> S Int)
 -> S Int

bindS m k = k (m ())

incr :: Int -> S Int

Acta Electrotechnica et Informatica No. 1, Vol. 3, 2003 41

incr x = unitS (x + 1)

expr (Num x) = x
expr (Add x y) = expr x
 `iadd`
 expr y

 where
 iadd = add(unitS 5 `bindS` incr)
 add _ = (+)
expr (Mul x y) = expr x * expr y

e _ = expr (Add (Mul (Num 3)
 (Num 4))

 (Add (Num 2) (Num 6)))

st x = (x, unitS () ())

main = "Value: " ++ show t ++
 " State: " ++ show s
 where
 (t,s) = (st (e (unitS 0)))

In contrast to Haskell form, the appropriate
sequencing must be guaranteed by explicit
application dependence. It means, that unitS 0
must be evaluated first initializing the variable to 0,
then the expression is evaluated e(unitS 0) and
then the pair containing both the value of expression
and the state is constructed
(by st (e (unitS 0)), see the pair (t,s)
definition in main.

As a result, the variable s is visible in monad
(S,unitS,bindS), and minimal change of
expr has been obtained.

The 3)/ solution not using monad is introduced
in the Example 6.2. This solution is equivalent to
monadic 3)/ one, except that we may use the value
of ua 0 application instead of c (ua 0) when
evaluating the arguments for functions add and e
that argument value, marked by underscore
character, is not significant.

Example 6.2 Pure 3)/ solution

ua :: s a -> a
ua x = x

expr (Num x) = x
expr (Add x y) = expr x
 `iadd`
 expr y
 where
 iadd = add (ua () + 1)
 add _ = (+)
expr (Mul x y) = expr x * expr y

e _ = expr (Add (Mul (Num 3)
 (Num 4))
 (Add (Num 2) (Num 6)))

st x = (x, ua ())

main = "Value: " ++ show t ++
 " State: " ++ show s
 where
 (t,s) = (st (e (ua 0)))

In both cases above the state is changed at two
different hierarchical levels of computation - the
initialization of variable s and reading the final state
is performed on the top level and the incrementing is
performed inside a purely functional grain defined
by pure function expr (since `iadd` is
referentially transparent).

7. CONCLUSION

A partial monadic approach in 3)/ is not so
restrictive to a programmer as Haskell approach,
since it may be applied at any level of computation
separately. The environment variables are visible
and the memory organization may be the subject of
software design. For the limited scope of this paper
it was however not possible to introduce here more
advanced computational spaces.

Nevertheless, two aspects of computation - the
function and the state - are bound in a very
systematic way. In terms of aspect oriented
programming (AOP) [6], `iadd` is a primitive and
synchronous case of a join point which has two-fold
semantics - it is an addition operation considering
functional aspect and it is count incrementing
operation considering state aspect.

In AOP, instead of manipulating different
aspects of computation in a single program
producing tangled code, each aspect is described
separately, considering join points in which the
aspects cross-cuts. Then, in principle, the scripts are
composed by automatic tool, called weaver,
producing the implementation with respect to all
aspects having been considered. AspectJ, as an
extension to Java [5], supports the ideas of AOP in
praxis. There are still many problems open. It is
argued, that AOP using AspectJ fails for transition
systems [7]. On the other hand, formal descriptions
for aspect programs using process algebras [1] as
well as denotational semantics for recursive
procedure calls [20] have been published.
Considering a set of domain specific languages for
different aspects in AspectCool [2] seems to be
better alternative for AOP, but multi-language AOP
is not so attractive for a user as single language
concept.

Our idea to exploiting 3)/ as aspect oriented
modeling language is as follows. Having a single
language L in 3)/ experimental form, it is
necessary to derive its subsets {Li | i=1«n}, adding
a minimum new syntactic constructs, such that all
languages Li(Ai) (Li with respect of aspect Ai) are
deterministic, while Lj(Ak) are non-deterministic for
all j k. Then, instead of weaving scripts we may
think about weaving partially deterministic subsets
of a single language producing its deterministic
implementation.

42 Partial Monadic Approach in Process Functional Language

From this point of view, this paper contributes to
a systematic joining of function and state aspects of
computation in a synchronous way.

REFERENCES

[1] Andrews, J.: Process-algebraic foundations of

aspect oriented programming. http://citeseer.nj.
nec.com/andrews01processalgebraic.html,
2001.

[2] Avdicausevic, E., Lenic, M., Mernik, M.,
Zumer, V.: AspectCOOL: An experiment in
design and implementation of aspect-oriented
language. ACM SIGPLAN not., December
2001, Vol. 36, No.12, pp. 84-94.

[3] Havlice, Z.: The Integrated CASE System
Based on the Modeling Tools Description
Language. Proc. Scient. Conf. CEI'99, October
1999, Her any, Slovakia, pp. 68-73.

[4] Hudak, P.: Mutable abstract datatypes - or -
How to have your state and munge it too. Yale
University, Department of Computer Science,
Research Report YALEU/DCS/RR-914,
December 1992, revised May 1993

[5] Kiczales, G. et al: An overview of AspectJ.
Lecture Notes in Computer Science, 2072:327-
355, 2001.

[6] Kiczales, G. et al: Aspect-oriented
programming. In Mehmet Aksit and Satoshi
Matsuoka, editors, 11th Europeen Conf.
Object-Oriented Programming, volume 1241 of
LNCS, pp. 220-242. Springer Verlag, 1997.

[7] Kienzle, J. and Guerraoui, R.: Aspect oriented
software development AOP: Does it make
sense? The case of concurrency and failures. In
B. Magnusson, editor, Proc. ECOOP 2002,
pages 37-61. Springer Verlag, June 2002.

[8] Kollir, J.: Process Functional Programming,
Proc. ISM'99, Roånov pod Radhoãt m, Czech
Republic, April 27-29, 1999, pp. 41-48.

[9] Kollir, J.: PFL Expressions for Imperative
Control Structures, Proc. Scient. Conf. CEI'99,
October 14-15, 1999, Her any, Slovakia, pp.
23-28

[10] Kollir, J.: Control-driven Data Flow, Journal of
Electrical Engineering, 51(2000), No.3-4, pp.
67-74

[11] Kollir, J.: Object Modelling using Process
Functional Paradigm, Proc. ISM'2000, Roånov
pod Radhoãt m, Czech Republic, May 2-4,
2000, pp. 203-208

[12] Parali , M.: Mobile Agents Based on
Concurrent Constraint Programming, Joint
Modular Languages Conference, JMLC 2000,
September 6-8, 2000, Zurich, Switzerland. In:
Lecture Notes in Computer Science, 1897, pp.
62-75.

[13] Peyton Jones, S.L., Wadler, P.: Imperative
functional programming, In 20th Annual
Symposium on Principles of Programming
Languages, Charleston, South Carolina,
January 1993, pp. 71-84.

[14] Peton Jones, S.L., Hughes, J. [editors]: Report
on the Programming Language Haskell 98 - A
Non-strict, Purely Functional Language.
February 1999, 163 p.

[15] Porubln, J.: Profiling process functional
programs. Research report DCI FEII TU
Koãice, 2002, 51. pp, (in Slovak)

[16] Smolka, G.: The Oz programming model, In
Jan van Leeuwen, editor, Computer Science
Today, Lecture Notes in Computer Science
1000, Springer-Verlag, Berlin, 1995, pp. 324-
343.

[17] Viclavtk, P.: Abstract types and their
implementation in a processs functional
programming language. Research report DCI
FEII TU Koãice, 2002, 48. pp, (in Slovak)

[18] Vokorokos, L.: Data flow computing model:
Application for parallel computer systems
diagnosis, Computing and Informatics,
20,(2001), 411-428

[19] Wadler, P.: The essence of functional
programming, In 19th Annual Symposium on
Principles of Programming Languages, Santa
Fe, New Mexico, January 1992, draft, 23 pp.

[20] Wand, M.: A semantics for advice and dynamic
join points in aspect-oriented programming.
Lecture Notes in Computer Science, 2196:45-
57, 2001.

BIOGRAPHY

-iQ Kollir (Assoc. Prof.) was born in 1954. He
received his MSc. summa cum laude in 1978 and his
PhD. in Computing Science in 1991. In 1978-1981
he was with the Institute of Electrical Machines in
Koãice. In 1982-1991 he was with the Institute of
Computer Science at the University of P. J. âafirik
in Koãice. Since 1992 he is with the Department of
Computers and Informatics at the Technical
University of Koãice. In 1985 he spent 3 months in
the Joint Institute of Nuclear Research in Dubna,
Soviet Union. In 1990 he spent 2 month at the
Department of Computer Science at Reading
University, Great Britain. He was involved in the
research projects dealing with the real-time systems,
the design of (micro) programming languages,
image processing and remote sensing, the dataflow
systems, the educational systems, and the
implementation of functional programming
languages. Currently the subject of his research is
process functional paradigm and its application in
the high performance computing.

