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SUMMARY 
This paper deals with the analysis and operability assessment of the power system during non-standard operation 

regimes. Increasing demands on high quality of power delivery and high reliability of the power system put growing pressure 
on power utilities that have to cope with these matters. The questions of reliability are important in the field of both power 
generation and power transfer. In order to meet sometimes very tough conditions on operation readiness of the power 
system, it is necessary to analyze the situation thoroughly. Several methods using different approaches for power system 
analysis have been worked out. Each of them has its advantages and drawbacks that determine their use in reliability 
assessment under real operating conditions. Some of these methods are relatively simple but have only limited use due to 
their lower accuracy. Anyway, they are still usable for some kinds of calculation. On the other hand, much more complex 
methods are needed in order to achieve higher accuracy of results. But calculations using these methods are usually much 
longer and more demanding, requiring iterations. Three different methods for analysis of power transfer networks are 
described in the following text, including evaluation of their limitations. 
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1. INTRODUCTION 

Reliability is a relation to consumer. We can 
characterize it as a general object¶s property, 
described as the ability to fulfill required functions, 
while set operating indicators remain within given 
boundaries and in time according to technical 
conditions. In this paper, we present some 
approaches that are used in power system analysis 
and thus enable to evaluate system reliability and 
operation readiness. 

When performing power transmission and 
distribution reliability assessment, it is necessary to 
choose at first a suitable criterion for operable state. 
In many cases we are interested only in problems 
connected with power interruptions, and we assume 
that individual elements have unlimited power 
transfer capacity. This is the simplest criterion that 
premises the operability in every case when the 
power system graph is formed by one uninterrupted 
part that contains all consumption nodes. The total 
generation capacity must be greater or equal to total 
power load. We do not take into account the power 
quality in consumption sites, especially the voltage 
magnitude. When solving complex power systems, 
we do not regard this criterion as sufficient. 

Therefore we next use only those criteria taking 
into account also the power quality. 

 
2. BASIC REQUIREMENTS AND CONCEPT 

OF CALCULATION 
 

When assessing the fault-free operation 
probability of the power system we accept the 
following simplifying assumptions: 
a) We regard a power system as operable if none of 

its elements is overloaded. The total generation 
capacity covers the power demand including 

power losses, and the voltage at consumption 
sites is within required limits. 

b) Every failure in the power system causes a 
transient process. This process is not considered; 
we concentrate on so-called ³steady faults´ only, 
i.e. we try to find out whether the system is able 
to operate in steady state resulting from the 
transient process caused by failure. 

c) The degree of risk due to random failures in the 
power system will be characterized by two major 
parameters: 

Probability of excessive power demand in the 
system « Qs 
Mean (expected) value of unsatisfied power 
demand « Zs 

 The value of Qs is expressed in % or relatively 
(Qs < 1). The complement to 1 is the probability 
of meeting the power demand Ps = 1 ± Qs. The 
value of Zs is expressed in MW or, if compared 
with total power demand, in % or relatively. 
Both Qs and Zs values can be calculated not only 
for the system as a whole but under certain 
supplement conditions also for a part of the 
system or for just one consumption node. 
 

Power system reliability assessment is based on 
the fundamental idea: each element of the power 
system (e.g. transmission line, generator, bus etc.) 
can find itself in one of two states: 
- ³0´ state, i.e. state in which the element is 

disconnected from the system and does not 
perform its function. This can happen for 
instance as a result of outage caused by the 
element¶s failure or other element¶s outage 
resulting from the shutdown due to a planned 
overhaul or maintenance. 

- ³1´ state, i.e. state in which the element is 
operating. 
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If the system is comprised of n elements, then it 
can find itself generally in 2n different states. The 
state of every single element is given with a 
probability that can be evaluated statistically from 
the element¶s behavior in recent period. Alike, each 
of 2n states of the system has a certain probability 
depending on reliability characteristics of individual 
elements and on their configuration. 

When assessing the power system reliability it is 
necessary because of high value of number 2n to 
carry out analysis of all possible states and choose 
only those ones that are really probable ± this is the 
first part of the task. The second part lies in 
evaluation of operability for every state chosen in 
such a way. This part of the task claims an iterative 
solution of network (or state in general). 

If we know a set of really probable states 
(together with the value of their probability) in 
which the power system is not fully operable, then 
we can work out the probability parameters Qs, Zs
described above and/or other derived parameters. 

Providing reliable power supply while keeping 
requested power quality in all consumption sites is 
conditioned by both power generation reliability and 
power transmission and distribution reliability in 
power grids. The questions connected with power 
generation reliability in the power system, e.g. the 
probability of meeting the total power demand in the 
power system by a set of power units while 
considering various influences, are not discussed in 
this paper. 

We concentrate only on questions of power 
transmission and distribution reliability, while power 
generating plant in general will be considered as one 
of the elements with known operating and reliability 
parameters. 

Next, we describe three approaches used for 
operability assessment of the power system in 
various states. 
 
3. OUTAGE ANALYSIS USING METHOD OF 

MAXIMUM FLOW IN THE TRANSFER 
NETWORK  

 
This operability criterion is related to a task of 

finding the maximum flow in the power transfer 
network known from graph theory. It is a simplified 
criterion that does not use iterative solution of the 
network. But the simplifying assumptions used in its 
application can be still considered as usable. 

The power system diagram is in general 
comprised of nodes, branches, sources and loads 
interconnected in certain configuration, e.g. 
according to Fig. 1. In this figure the values of c1, 
«, c6 denote the maximum power transfer capacity 
of branches (in MVA), S1, S2, S3 denote requested 
power loads (in MVA) and Z1, Z2 power supplies (in 
MVA) that are available from power sources. The 
diagram in Fig. 1 can be rearranged into other form 
depicted in Fig. 2, which contains only one power 
source Z of unlimited capacity and only one power 
load S = S1 + S2 + S3. The real sources and loads are 
taken into account as additional branches with power 

transfer capacities c7 = Z1, c8 = Z2, c9 = S1, c10 = S2, 
c11 = S3. 

We work out for diagram according to Fig. 1 
so-called maximum flow, i.e. the maximum possible 
value of power in MVA that can flow from Z to S, 
while none of power transfer capacities ci in 
corresponding branches is exceeded. If this 
maximum flow is greater or equal to value S, then 
the power grid is considered operable, while the 
opposite case is considered a fault state. The outage 
of some element or set of elements is represented by 
the change of value of corresponding power transfer 
capacity according to Fig. 2 to 0 (ci = 0). 

Fig. 2 can be mathematically interpreted as a 
graph in which the transfer elements 1  11 
represent graph edges. The solved problem can be 
then transformed into a task of iterative solution of 
maximum flow through a given graph with limited 
capacity of its edges while taking into account 
various outages. This way we can obtain the answer 
to question whether or not a given state of the 
system can transfer requested power load, and thus 
assess the operational readiness of the power system 
in this state. 

 

      Fig. 1  A graph of             Fig. 2  A rearranged 
an electric power network       graph from Fig. 1 
 
 

For finding the maximum flow through a graph 
with limited capacity of its edges, the Ford-
Fulkerson algorithm can be used.
 

In order to apply a maximum flow method with 
success, it is necessary to meet some basic 
assumptions: 
1. The transfer capacities of individual elements 

must be evaluated regarding the maximum 
allowable voltage drops in individual branches, 
corresponding e.g. to peak load in the power 
system. If the condition is met, that each element 
transfers power lower than the set limit, then no 
significant voltage drops can occur, which would 
otherwise result in voltage magnitude in some 
nodes out of limits. Then it is not necessary to 
check node voltages when assessing the 
operability. 

2. It is important to assume certain possibilities of 
voltage regulation in the power system in order 
to eliminate cases when some of the network 
parts is overloaded while other is used 
substantially below its top limit. The network as 
a whole is then able (in the sense of maximum 
flow) to transfer requested power load. But in 
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this case the voltage deviations in individual 
nodes are significant. 

 
The described method is approximate; in 

accurate calculations we cannot avoid using the 
given values of passive parameters of the network 
(R, L, C). But for quick and rough network 
reliability assessment it seems to be sufficient. 
 
4. OUTAGE ANALYSIS USING METHOD OF 

SIMPLIFIED NETWORK SOLUTION 
 �³GiUHcW�cXUUHnW maWKHmaWicaO moGHO´� 
 

Basic power equations valid for the ith node of 
the electric network in steady state have this form: 

 

1
cos

N

i Di Oi i k ik i k ik
k

P P P U U A

1
sin

1

N

i Di Oi i k ik i k ik
k

Q Q Q U U A

i N
  

 (4.1) 
 
where N is a number of network nodes; they are 
interconnected by branches, each of the branches 
represents one network element, 
 

ik ik ikA A , i, k = 1 N are so called ³calculation´ 

nodal admittances; for i  k, ikA  equals the real 
admittance between nodes i, k with the opposite 
sign; for i = k, iiA  equals the sum of all admittances 
(both direct-axis and quadrature-axis) connected to 
node i, 
 

i i iU U is the complex voltage in node i; its 

magnitude equals phase-to-phase voltage in the 
node, i denotes the phase angle between this 
voltage and the voltage in so-called reference node s, 
where s = 0. 
 
PDi, POi is the true power supplied and consumed in 
node i, 
 
QDi, QOi is the reactive power supplied and 
consumed in node i; the inductive reactive power is 
positive. 
 
Next, we accept the following simplifying 
assumptions: 
a) We neglect the resistance R and leakage G of 

electric network elements, thus: 
 

 
2ij ij ijA jB B  

 
b) The voltages in individual nodes are 

approximately constant so it is not necessary to 
take into account the equations for reactive 
power 

c) We choose node 1 as a reference node, i.e. 1 = 
0, which means that we can eliminate the first 
one of equations for true power 

d) Assuming the angle ( )i k  small enough, we 
can use the following substitution: 
( )i k  instead of 

cos( ) sin( )
2i k i k  

 
Then equations (4.1) obtain this form:   
 

1 2
( )

2

N N

i Di Oi i k ik i k ik ik
k k

P P P U U B R

i N
 (4.2) 
 
where  : ik i k iki k R U U B  

 
1

:
N

ii i k ik
k
k i

i k R U U B  

 
The formula (4.2) can be expressed in matrix 
notation: 
 

D OP P P R   (4.3) 
 
It represents so called ³direct-current´ mathematical 
model of the power system in steady state. If we 
know both supplied and consumed true power in 
nodes (PD, PO) and passive network parameters, 
represented in this case by matrix R of order N-1, 
then by solution of (4.3) the values of 2  N for N-
1 unknown nodes can be found ( 1 = 0). True power 
flowing through any branch connecting nodes i, k is 
then given by the following equation: 
 

( )ik ik i kP R                   (4.4) 
 
If power outage in some site occurs (e.g. as a result 
of failure), then the value of PDi in this site changes, 
which leads according to 
 

1( )D OR P P                                (4.5) 
 
to a change of elements of vector  and thus 
according to (4.4) to changes in power flows in all 
branches of the network. If any of the branch 
currents exceeds the allowable limit the network 
cannot be considered operable. 

If an outage of one or more branches (e.g. 
transmission line, transformer, bus) occurs (as a 
result of failure in the power system) while power 
supply and power load in nodes unchanged, then this 
shows in equations (4.3) as a change in both matrix 
R and . 

Before failure stands: 
 

( ) ( ) ( )o o oP R                                 (4.6) 
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After failure stands: 
 

( ) ( ) ( )( )( )o o oP R R       (4.7) 
 
Neglecting the term RÂ  (of second order and 
therefore of low magnitude) and using (4.6) and 
(4.7) we get: 
 

1
( ) ( )o oR R                         (4.8) 

 
Similarly from (4.4): 

( )ik ik i kP R     (4.9) 
 

Equation (4.8) reflects the changes of voltage 
phase angles while equation (4.9) reflects the 
changes of power flows in branches, both resulting 
from alterations in the power system configuration. 

When assessing operational readiness of the 
power system in various states, we know R-1

(o), (o), 
and/or P(o)

ik representing the original fault-free state. 
It is necessary to work out matrix R for every 
possible fault state. 

From the described derivation results the fact 
that if we remove one branch in the power system, 
e.g. between nodes p, q, then only elements Rpp, 

Rpq, Rqp and Rqq of matrix R will be non-zero: 
 
pp qq pq qp pqR R R R R      (4.10) 

 
By substituting into (4.8) we obtain: 
 

( ) 1
( ) ( ) ( )( )pq
o o p p o q qR R R   (4.11) 

 
( , ) ( , ) ( , )( )p q p q p q

ik ik i kP R            (4.12) 
for ik pq   

In equations (4.11) and (4.12) denotes: 
(p,q) changes of voltage angles in nodes i = 2  N 

when branch p, q removed 
Pik

(p,q) change of power flow in branch i, k  p, q 
when branch p, q removed 

(o)p, (o)q voltage angles in nodes p, q before 
removing branch p, q  

Rp, Rq the pth and qth column of matrix R. 
 
The method enables to find out relatively easily 
whether or not a branch of the power system is 
overloaded during the outage of some of the network 
elements (source, transmission line, transformer) 
with no need to iterate the calculation. It can be 
easily generalized for case of multiple outages (e.g. 
bus) because the dependence of voltage angle 
changes  on network configuration changes R is 
according to (4.8) linear.  

Regarding the accepted assumptions, the method 
is not very accurate so it should be used only for 
quick and rough reliability calculations. The 

approach using the nodal impedance matrix is 
needed for more accurate outage analysis. 
 
5. OUTAGE ANALYSIS FOR VARIOUS 

ELEMENTS OF THE POWER SYSTEM 
USING THE METHOD OF NODAL 
IMPEDANCE MATRIX 

 
Nodal impedance matrix Z of the power system 

expresses relationship between voltages in nodes of 
the power system (U1, U2, «, UN) and node currents 
(I1, I2, «, IN) according to equation (5.1): 
 

IZU                   (5.1) 
 

It is the inverse to so-called nodal admittance 
matrix A with elements Aik, Aii. There have been 
many algorithms worked out for its construction. 

Suppose the power system has been solved for 
one particular basic state denoted with (0) index. 
Thus we know all node voltages Ui

(0), i = 1  N and 
branch currents Iik

(0), ik = 1  M for this state. This 
state is also acceptable in terms of operability 
conditions. 

Suppose furthermore the nodal impedance matrix 
Z(0) is known for the whole network, including both 
branch impedances of the power system and 
equivalent impedances of individual loads: 

 
2

i
Si

Si Si

U
Z

P jQ
                        (5.2) 

 
where PSi and QSi are the true and reactive power 
consumed in node i, Ui  is the magnitude of 
phase-to-phase voltage in node i. If QSi > 0 then the 
reactive power is inductive, and on the contrary if 
QSi < 0 then the reactive power is capacitive.  

Power supply in nodes of the power system will 
be represented by node currents Ii, i = 1  N. For the 
original (basic) state stands: 

 
(0) (0) (0)U Z I                          (5.3) 

 
where U(0) is a vector of node voltages Ui

(0), i = 1  
N and I(0) vector of nodal currents Ii

(0), i = 1  N. If 
in this state a fault occurs, e.g. branch switch-off or 
source outage, then it shows in a change of node 
voltages Ui

(0) by value of Ui and change of branch 
currents Iik

(0) by value of Iik. If any operating 
quantity exceeds allowable limits this new state will 
be considered a fault state (non-operable) in terms of 
power system reliability assessment. We further 
adopt the following simplifications. 

A network will be considered operable if each 
branch is loaded below the transfer capacity, which 
is scheduled for every single branch in advance 
respecting voltage drops. Then there will be no 
significant voltage drops that would otherwise put 
voltage in some parts of the power system out of 
allowable limits. Thus no further check of voltage 
magnitude in individual nodes will be needed. 
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Let¶s derive a formula for the current changes in 
individual branches Iik, (ik) = 1  M during fault 
outage of one branch ± (mn). Before the outage, the 
current Imn

(0) flowed through the branch. Suppose 
further a network without zero-valued supply 
currents Ii

(0) in nodes i = 1  N. Should the current 
Imn

(0) flow through branch (mn), it is necessary that 
node m is supplied with current Im; for this stand the 
following equations: 
 

(0) (0) (0)
1 11 12 1

(0) (0) (0)
2 21 22 2

(0) (0) (0)
1 2

0
0

0

N

N

m

N N N NN

U Z Z Z
U Z Z Z

I

U Z Z Z

       (5.4) 

 
(0)m n
mn

mn

U U
I

z
 (5.5) 

where zmn is the direct-axis impedance of branch 
(mn). From (5.4): 
 

(0)
m mm mU Z I                          (5.6a) 

 
(0)

n nm mU Z I        (5.6b) 
 
By substituting (5.6a,b) into (5.5) and rearranging 
we get: 
 

(0)
(0) (0)

mn
m mn

mm nm

z
I I

Z Z
         (5.7) 

Currents in all remaining branches resulting from 
supply current Im into node m according to (5.5) and 
using (5.6a,b) are worked out as follows: 
 

(0) (0) (0) (0)
(0) i k im km
ik m

ik ik

U U Z Z
I I

z z
         (5.8) 

  
If we eliminate now branch (mn), the nodal 
impedance matrix will change into Z(1) and assuming 
the same injected current Im according to (5.7), the 
magnitude of currents in other network branches (ik) 
can be found as follows: 
 

(1) (1)
(1) im km
ik m

ik

Z Z
I I

z
         (5.9) 

 
It¶s obvious from (5.9) that Imn

(1) = 0, the branch 
(mn) was removed. The branch currents have 
changed by this value: 
 

(1) (0)
ik ik ikI I I         (5.10) 

 
By substituting (5.7), (5.8) and (5.9) into (5.10) we 
obtain: 

(1) (1) (0) (0)
(0)

(0) (0)

( ) ( )mn im km im km
ik mn

ik mm nm

z Z Z Z Z
I I

z Z Z
  (5.11) 

 
The branch current changes Iik against the original 
currents Iik

(0) enable us to assess the power system 
operation readiness in terms of branch overload. 

When it is necessary to assess the multiple 
outages of two or more branches, the same method 
can be applied. For each afflicted branch must be 
worked out the corresponding current supplied into 
one of the two branch¶s nodes. Matrix Z(1) is then a 
matrix corresponding to the resulting network after 
elimination of the afflicted branches. 

The major problem in application of this method 
is finding a new impedance matrix Z(1) when 
assessing individual outages. Without its derivation, 
we describe here the algorithm for construction of 
matrix Z by gradual adding of branches, which can 
be used even when changing matrix Z(1) into Z(0). 
Eliminating a branch of impedance zmn can be 
regarded as adding a parallel branch of impedance 
-zmn, so the same formulas as in the described 
algorithm can be used. 

The construction of nodal impedance matrix 
proceeds according to the following procedure. If 
the network contains N + 1 nodes marked 0, 1, 2, «, 
N, where node 0 is the reference node (voltages of 
other nodes are related to it), then the resulting 
matrix is of order N. The nodal impedance matrix 
for a circuit, containing just one branch between 
nodes 0 and 1 of impedance z10, is of first order and 
has this form: 

 
10zZ                                                   (5.12) 

 
Suppose now we know the nodal impedance 

matrix Z for a partial circuit consisting of n nodes 
and reference node 0: 
 

11 12 1

21 22 2

1 2

n

n

n n nn

Z Z Z
Z Z Z

Z Z Z

Z                (5.13) 

 
Adding a new branch (pq) of impedance zpq can 
result in two possibilities: 
 
1. A new node q arises. In this case a new matrix Z¶ 

will have one additional column and one 
additional row in comparison with matrix Z from 
(5.13) corresponding with the new node q. The 
other elements of the matrix remain the same. 
For elements of the qth row and column stands: 

 
Zqi = Zpi,   Ziq = Zip,   i = 1 · n, i  q  
Zqq = Zpp + zpq                                     (5.14) 
 

If p is the reference node (p = 0) equations (5.14) 
are also valid, and 
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Zpi = 0,  i = 1 · n,  i  q                                 (5.15) 
 
2. No new node arises. In this case the original 

matrix Z retains its dimensions but the values of 
all the elements change. The elements of a new 
matrix Z¶ are given by: 

 
' ( )( )

, , 1pi qi pj qj
ij ij

pp qq pq

Z Z Z Z
Z Z i j n

Z Z z
 (5.16) 

 
If p is the reference node (p = 0) equation (5.16) 

is also valid, whereas 
 

0, , 1pi pj ppZ Z Z i j n  (5.17) 

Even if the described method can be generalized 
for case when network branches are mutually bound, 
the simple equations (5.14)  (5.17) are sufficient in 
real conditions. If for instance several transmission 
lines are attached to the same power pylons with 
existing coupling, they can be replaced by one or 
more branches with self impedance that respect the 
mutual influence of power lines. 

Now let¶s get back again to outage analysis of 
the power system branches. The outage of branch 
(mn) of impedance zmn can be regarded as an 
addition of branch (mn) of impedance -zmn without 
creation of a new node. According to (5.16) for 
elements of matrix Z(1) stands: 
 

(0) (0) (0) (0)
(1) (0)

(0) (0)

( )( )mi ni mj nj
ij ij

mm nn mn

Z Z Z Z
Z Z

Z Z z
      (5.18) 

 
According to this formula it is possible to find the 
impedances Zim

(1), Zkm
(1): 

  
(0) (0) (0) (0)

(1) (0)
(0) (0)

( )( )mi ni mm nm
im im

mm nn mn

Z Z Z Z
Z Z

Z Z z
      (5.19) 

 
(0) (0) (0) (0)

(1) (0)
(0) (0)

( )( )mk nk mm nm
km km

mm nn mn

Z Z Z Z
Z Z

Z Z z
     (5.20) 

 
Then we can calculate the value of Iik. We 
substitute (5.19) and (5.20) into (5.11). The result is 
as follows: 
 

(0) (0) (0) (0)
(0)

(0) (0)

( ) ( )mn mk nk mi ni
ik mn

ik mm nn mn

z Z Z Z Z
I I

z Z Z z
 (5.21) 

Formula (5.21) is final and shows how much the 
currents in branches (ik) of impedance zik change 
when an outage of branch (mn) of impedance zmn
occurs, if the pre-outage current of this branch was 
Imn

(0). It is necessary for the calculation of the current 
change Iik to know the elements of the original 
nodal impedance matrix Z(0). 

So far the outages of certain branches of the 
power system have been analyzed. Much easier task 

is the analysis of power source outage in certain 
node of the power system. In this case the first step 
is to find out whether or not the remaining power 
sources are able to meet the actual power demand. If 
not, this state of the power system must be 
considered a fault state. 

But if the remaining power sources are able to 
meet power demand, then we have to further check 
whether some of the branches will not become 
overloaded. It can be done using matrix Z. This case 
is easier in comparison with branch outage because 
this time the original nodal impedance matrix Z(0)

does not change. In equation (5.3) only the nodal 
current vector I(0) changes into I(1) in such a way that 
Ip

(1) = 0 (p is index of the node where source outage 
occurs). The current changes in individual branches 

Iik are then using (5.5) and (5.10) given by: 
 

(1) (1) (0) (0)
(1) (0) ( ) ( )i k i k

ik ik ik
ik

U U U U
I I I

z
 (5.22) 

 
According to (5.3) and (5.6a,b) we can write: 
 

(0) (0) (0)

1

N

i ij j
j

U Z I     (5.23a) 

 
(0) (0) (0)

1

N

k kj j
j

U Z I      (5.23b) 

 
(1) (0) (1) (0) (0) (0)

1

N

i ij j i ip p
j

U Z I U Z I      (5.24a) 

(1) (0) (1) (0) (0) (0)

1

N

k kj j k kp p
j

U Z I U Z I      (5.24b) 

 
Hence after substituting into (5.22) we get: 
 

(0) (0)
(0)kp ip

ik p
ik

Z Z
I I

z
    (5.25) 

 
Equations (5.22), (5.25) express how much the 

currents in the power system change and what is the 
effect on the power flows in individual branches 
during an outage of power source or branch in the 
power system, while power demand remains the 
same. Based on comparison with the scheduled 
power flows that respect the voltage constraints, it 
can be assessed whether or not the state of the power 
system is acceptable. 
 
 
6. CONCLUSION 
 

Outage analysis using method of maximum flow 
in the transfer network is approximate; in accurate 
calculations we cannot avoid using the passive 
parameters of network (R, L, C). But for rough 
network reliability assessment it seems to be 
sufficient. 
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Regarding the accepted assumptions, the outage 
analysis using method of simplified network 
solution is not very accurate, so it should be used 
only for quick and rough reliability calculations. The 
approach using the nodal impedance matrix is 
needed for more accurate outage analysis. 

Outage analysis for various elements of the 
power system using the method of nodal impedance 
matrix seems to be optimum in the sense of 
accuracy. Based on comparison with the scheduled 
power flows that respect the voltage constraints, 
using the formulas described in the paper, it can be 
assessed whether or not the state of the power 
system is acceptable. 

 
This paper was written as a part of the GA R 
project (GA R 102/02/0949 
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