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SUMMARY 
In the article the method of optimised design of the passive LC type compensator for uniform line is described. The load 

at the end of the line can be linear, or non-linear, e.g. a semi-conductor converter. In the first case the currents and voltage 
in the line are harmonic, in the second case harmonic high orders are introduced into the line. These harmonics of higher 
orders increase power losses in the line. The article shows that a long line can be significant for simulating and designing a 
compensator. 
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1. INTRODUCTION 
 

Calculation of the capacity of power factor 
capacitor and inductance of balancing coils for a 
three-phase symmetrical load is known, if the line 
can be approximated as a circuit with lumped 
parameters.  If we simulate line as a circuit with 
distributed parameters, the course of the current 
along the line is rather complicated and the 
calculation of the capacity of power factor capacitors 
is no more an elementary matter. The problem can 
be complicated by the fact that the load at the end of 
the line is non-linear (e.g. controlled thyristor) and 
drawn currents contain the harmonics of higher 
orders. Our paper is devoted to the optimal design of 
passive compensation. 
 
2. ALGORITHM OF THE CALCULATION 
 
2.1  Linear load 
 

Let us consider a symmetrical three±phase linear 
load connected by a three-phase uniform line with 
the source of harmonic voltage and the system in a 
steady state. This three-phase circuit can be replaced 
(as it is known from e.g.[1]) by an equivalent one-
phase line, Fig. 1. 

 
Fig. 1  Power supply and compensation circuit 

supply by a uniform line 
 
 

If we label the parameters of the equivalent one-
phase homogenous line for a length unit R, L, C, G, 
the course of voltage and current along this line is 
given by the known relations: 
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represent the wave impedance and line propagation  
constant, and Ue , Ie are phasors of voltage and 
current on the terminals of the load. 
 
The complex power supplied to the load is: 
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where *
eI is a complex phasor that is conjugated with 

phasor eI , PL is the active input of the load, and QL

is reactive input. 

L

L
2

LLLL cos
cos-1

tg PPQ  (4) 

 
Compensation is accomplished through a 

compensation circuit consisting of a series 
connection of power factor capacitors of capacity Cc,
and a coil of inductance Lc. The compensation 
circuit is connected to the terminals of the load. 
Resonance frequency of this series circuit is 190 Hz. 
Resonance frequency is identified so, in order to be 
away from frequency higher harmonic in network. 
For the concrete Cc with using the relation 
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we calculate Lc.  
 
The complex output that is delivered to the 

compensation circuit is described as follows: 
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After substituting for Lc from eq. (5) we obtain: 
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At the end of the line the complex power is: 
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Voltage and current are distributed along the line 

according the relations: 
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The following relation describes active losses in 
the line: 
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or more simply 
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where  P(l)  is active output delivered by the source. 

 
The optimisation task is formed as follows: we 

know Ue, PL, cos L, R, L, C, G (or Z0,  ), l. We 
search the value C for which the active losses are 
minimal,   
 

P = min.  (13) 
 

As it is a one-parameter optimisation task, its 
numerical solution is easy. To be able to investigate 
the minimum neighbourhood, we design the course 
of dependence P = f(Cc) and find the co-ordinates 
of the global minimum ( Pmin; Cc min).  
 
2.2  Non-linear load 
 

The load is considered to be a converter working 
to the load that has an inductive character. The 
waveform of the current is (Fig. 2). 
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Fig. 2  Course of the current drawn by the load 
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It is an odd function and thus only the sinus 

function can be used with the amplitude: 
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If we consider a symmetrical network at 3-phase 

bridge converter, then d + k = 60O.  Therefore we 
obtain that: 
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For higher order harmonics, we can then write: 
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After substituting for 2d = 2 /3 we obtain the 

relation: 
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The phase shift between harmonics is given by: 

 
arctan( / )n n na b  (21) 

 
It is an odd function. For an odd function it is 

valid that Fourier series contains only sinus 
members. From formula (21) it is evident that the 
phase shift of harmonics is zero. 

 Limited to the first three harmonics, the current 
taken by the load is: 
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 Current and voltage of a particular harmonic is 
calculated from equations: 
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 The known boundary conditions are: 
 
U(0) = Up,  I(l) = Ik (25) 
 
After substituting the conditions (25) into the 
equation (23 and 24) we obtain: 
 
Up  =  A  +  B (26) 
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 In solving this equation, the coefficients of A and 
B are defined, giving us:   
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 In substitution for    
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where ZLC is the compensator impedance and IS is 
the current produced by the converter. 
 

We get the relation for the voltage at the end of 
the line:  
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From formula (29) it is possible to define the 
voltage of particular harmonics at the end of the line 
and then current at the end of the line Ik. Providing 
the source does not produce any voltage that 
contains harmonics of higher orders, then in formula 
(30) the voltage at the beginning of the line of each 
harmonic equals zero. Then it is possible to write 
down this relation for the harmonic of order n in the 
form  
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 Losses in homogenous lines are calculated as 
follows: we define instantaneous value of current 
courses in particular harmonics in homogenous line. 

Then we add these currents and calculate the final 
loss from it  
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(when neglecting the losses in insulation) 
 
3. SIMULATIONS  RESULTS 
 
3.1  Linear load 
 

Input values of load: Ue = 110 kV, PL = 21,45 
MW, cos L = 0,65, f = 50 Hz. Cable lines have 
parameters  (according to standard SN 332000-5-
523):  R = 0,153 /km, L = 1,238 mH/km, C = 10 
nF/km, G = 0,1 S/km and its length is l = 500 km.  
 
a) Compensation by condenser Cc  only (Lc = 0) 
Dependence of losses on the lines in capacity Cc has 
its minimum for Cc min = 4,3 F. Now the losses in 
lines reach the value Pmin = 3,7025 MW. In Fig. 4 
the courses of voltage and current along the lines in 
this optimal compensation are shown. 
 
b) Compensation by series circuit Lc and Cc  
A graph of function P = f(Cc) is shown in Fig. 5. 
Co-ordinates of minimum are: Pmin = 3,7026 MW,   
Cc min = 4 F. Fig. 6 shows the courses of voltage 
U(y) and current I(y) along the lines for 
compensation circuit LC, where Cc = 4 F,  
Lc=175mH. 

Fig. 3  Dependence of losses P in the lines on 
capacity Cc . Compensation by capacitor only 

Fig. 4  Course of voltage U(y) and current I(y) along 
the lines at optimal compensation 
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Fig. 5  Dependence of losses in the lines P on 
capacity Cc . Compensation circuit Lc Cc 

 

 
Fig. 6  Course of voltage U(y) and current I(y) along 
the lines at Cc = 4 F. Compensation circuit contain 

Lc and Cc 
 

3.2  Non-linear load 

 For non-linear loads in the course of losses on 
capacity Cc, two local minima were found. Phase 
shift of current of higher harmonics was considered 
the same. The compensator consists of a series 
connection Lc, Cc, with a resonance frequency of 190 
Hz. The course of losses along the line is in 
dependence on capacity (Fig. 7). The course of 
losses has the minimum for Cc min = 1,9 F, Pmin = 
6,4 MW. Simulation was carried  out  by  MATLAB  
 

 
Fig. 7  Dependence of losses P along the line on 

capacity Cc . Compensation circuit Lc , Cc that loads 
the current contains harmonics of order 1, 3, 5 

programme [3]. It is evident that calculation based 
on distributed parameters of line increases efficiency 
of compensation and led to decreased losses in the 
line. 
 
4. CONCLUSION 
 

The method was described of calculating 
compensation circuit parameters Lc a Cc for a non-
linear load, which is supplied from a uniform line. 
This method can be used for solving more general 
optimisation problems of the design of 
compensation circuit Lc and Cc for a non-linear load. 
From this article it is evident that methods currently 
used in practice for the compensation circuit design 
are not fully optimal when it comes to minimising 
losses in the line. 
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