
Acta Electrotechnica et Informatica No. 2, Vol. 4, 2004 45

EFFECTIVE WAY OF OVERRIDING C++ OPERATORS FOR MATRIX
OPERATIONS

Jan CVEJN
Technical University of Liberec, Faculty of Mechatronics and Interdisciplinary Engineering Studies

Hálkova 6, 461 17 Liberec, Czech Republic, E-mail: jan.cvejn@vslib.cz

SUMMARY
The article describes an effective way how to create a library for manipulating matrices in a similar manner as if they

were numbers in programming language C++. Although overriding arithmetic operators for manipulating classes such as
vectors and matrices seems to be a standard procedure in C++, there occur serious problems when performance aspects are
taken into account. The main disadvantage consists in frequent allocating and deallocating memory, which can significantly
slow down evaluating arithmetic expressions. In the article an implementation is described that eliminates redundant
memory allocations and enables using overridden operators for effective evaluating matrix expressions.

Keywords: C++ programming, overloading operators, object-oriented programming

1. INTRODUCTION

Creating classes to simplify operations with
dynamic structures is one of key concepts of object-
oriented programming in general and implementing
such a class is a common procedure in any object�
oriented language. In C++, it is however possible to
go further and extend applicability of arithmetic
operators to manipulate with structured objects. This
would be especially useful at work with objects that
naturally participate in arithmetic expressions, such
as vectors and matrices. For example, let us consider
the following matrix expression:

1 TC B AB D E

A general approach to creating a class to simplify

programming such expressions in an object-oriented
language would be defining methods for matrix
addition, multiplication, transposition and inversion.
The expression above would be then transcribed as
follows:

Z.inv(B);
Y.mul(B,A);
X.mul(Y,Z);
W.tr(D);
V.mul(W,E);
C.add(X,V);

In this example it is needed to define help matrix
variables Z, Y, X, W, V. However, which is worse,
from the lines above it is not very obvious what they
actually do. In C++ we can, under some conditions,
which are discussed later, override operators to
enable writing the expression in natural form as
follows:

C = B*A*B.inv()+D.tr()*E;

In this way matrix expressions can be computed
in a similar manner as in some high-level matrix
language while keeping high performance and full

control of evaluating. Since such expressions are
usually parts of complex numerical algorithms,
effectivity is very important.

2. BASIC IMPLEMENTATION

To start, let us define a simple C++ class for
matrix operations and describe briefly some
elementary steps. The memory for floating-point
data is allocated dynamically.

#define NUM double

class Matrix
{

NUM *pdata; //buffer for data
int dataLen; //length of

//allocated buffer
int m,n; //dimensions of matrix

public:
 Matrix()
 {

pdata=NULL;
 dataLen=m=n=0;
}

Matrix(int m,int m)
 {

pdata=NULL;
dataLen=m=n=0;
redim(m,n);

 }

~Matrix() { delete[] pdata; }

void copy(const Matrix &A);
void redim(int _m, int _n); //method

//for (re)allocating memory

Matrix(const Matrix &A) { copy(A);}

Matrix &operator=(const Matrix &A)
 {

delete[] pdata;
copy(A); return *this; }

46 Effective Way of Overriding C++ Operators for Matrix Operations

 void setValue(NUM value);

 void checkBounds(int i, int j)
 { assert(0<=i && i<m
 && 0<=j && j<n); }

 NUM &operator()(int i, int j)
 { checkBounds(i,j);
 return pdata[i*n+j]; }

 NUM getAt(int i, int j)
 { checkBounds(i,j);
 return pdata[i*n+j]; }

 void setAt(int i, int j, NUM v)
 { checkBounds(i,j); pdata[i*n+j]=v;}
};

Using this class we can create a matrix variable
A of dimensions m x n as follows:

Matrix A(m,n);

To access a particular element of the matrix, the
overridden operator () can be used:

A(0,0)=1;

or

A.setAt(0,0,1);

Methods for accessing elements use standard
debugging macro assert() to check for correct values
of indexes. This macro does not affect performance
since it is automatically omitted in the release build
of the program. All these methods are written as
inline for eliminating overhead of calling functions.

Since the copy constructor and operator = are
overridden, we can write

Matrix B(A),C;
...
C=B;

Note that operator= has to deallocate data unlike
the copy constructor.

There remain several things to write � method
redim() used for allocating and reallocating the
memory, method setValue() used for initializing data
and method copy() for copying the data.

void Matrix::setValue(NUM value)
{
 for(int i=0;i<m*n;i++)
 pdata[i]=value;
}

void Matrix::redim(int _m, int _n)
{
 if(m!=_m || n!=_n)
 {
 if(_m*_n>dataLen)
 {
 dataLen=_m*_n;

 delete[] pdata;
 pdata=new NUM[dataLen];

 }
 m=_m;
 n=_n;
 }
}

void Matrix::copy(const Matrix &A)
{

redim(A.m, A.n);
memcpy(pdata,A.pdata,
 m*n*sizeof(NUM));

}

Note that dataLen is greater or equal to m.n. The
buffer is reallocated only if it is necessary, i.e. if it
would be m.n > dataLen. This is one of the most
important features of this class implementation. If
any global or static object of class Matrix is used for
storing results, its data buffer is reallocated only
once, or possibly a few times if the variable is used
at more places of the program for storing matrices
with different dimensions.

Internal implementation of Matrix could be
different. For example, it would be possible to
define it as a dynamic array of pointers to dynamic
arrays that are allocated separately. In this case, the
access to an element may be on some machines little
faster, since there is no need of multiplication:

class Matrix
{
public:
 NUM **pdata;

int m, n; //dimensions of
 //the matrix

 ...

NUM& operator()(int i,int j)
 //obtain ref. to A(i,j) elem.

 {
 return pdata[i][j];
 }
};

However, in this case, reallocating the data
buffers is more complicated. Another advantage of
the first implementation is the possibility of iterating
through data in a single loop, which is faster (see
implementation of methods setValue() and copy()
above).

3. OVERRIDING OPERATORS

Now, some operators for manipulating matrices
can be defined. At first, two simple and commonly
used ways are described with their disadvantages.

The operators +, += can be defined as follows:

class Matrix
{
 ...

 void operator+=(const Matrix &A);
 Matrix operator+(const Matrix &A);
};

Acta Electrotechnica et Informatica No. 2, Vol. 4, 2004 47

void Matrix::operator+=(const Matrix
&A)
{
 assert(m==A.m && n==A.n);

//+ defined only for matrices of
//the same dimensions

for(int i=0;i<m*n;i++)
 pdata[i]+=A.pdata[i];

}

Matrix Matrix::operator+(const Matrix
&A)
{
 assert(m==A.m && n==A.n);

 Matrix B(m,n);

 for(int i=0;i<m*n;i++)
 B.pdata[i]=pdata[i]+A.pdata[i];
 return B;
}

Operator += can be overridden in this way
without any problems. Operator + implementation
requires some discussion. The previous simple way
to define operator + is correct, but unfortunately
ineffective. Each time it is called, it has to allocate
memory for the local object B that it returns.
However, when B is returned, a new temporary
object is created to hand over the data. This needs
one more memory allocation. Finally, assignment
operator = used in expression C=A+B may require
one more call of redim(). Here the reallocation is not
done if the matrix C has already sufficiently large
data buffer. The right-hand arguments of the
operators are handed over using references to save
more memory allocations. Nevertheless, the
operating system is called two times at minimum to
allocate memory at each time the + operator is
invoked. This allocation can be much more
demanding than pure copying and summing the data.

Let us look at a different approach to defining
operators. To omit unnecessary copying of data,
arithmetic operators are often defined to return the
reference to a local static object:

class Matrix
{
 ...

 Matrix &operator+(const Matrix &A);
 Matrix &operator*(const Matrix &A);
};

Matrix &Matrix::operator+(const Matrix
&A)
{
 assert(m==A.m && n==A.n);

 static Matrix B; //!
 B.redim(m,n);

for(int i=0;i<m*n;i++)
 B.pdata[i]=pdata[i]+A.pdata[i];

 return B;
}

Matrix &Matrix::operator*(const Matrix
&A)
{
 assert(n==A.m);

 static Matrix B;
 B.redim(m,A.n);

 for(int i=0;i<m;i++)
 {
 for(int j=0;j<A.n;j++)
 {
 NUM sum=0;

 for(int k=0;k<n;k++)
 sum+=getAt(i,k)*A.getAt(k,j);

 B.setAt(i,j,sum);
 }
 }
 return B;
}

In this case, the expression A+B will return
reference to the static variable, defined in the
operator + body, which holds the result. Expressions
C=A+B and D=A+B+C will be evaluated correctly.
However, let us look at an expression like this:

E=A*B+C*D;

C++ language keeps priorities of operators even
if they are overridden for user classes. In the case of
expression above, products A*B and C*D have to be
held in two separate places before summation.
However, there is only one help static variable in
operator * to hold the temporary result. Therefore,
the result cannot be correct.

Obviously, both the approaches are not suitable �
either ineffective, or incorrect in some cases.

Note that an operator function has to return either
Matrix or reference to Matrix so that more
complicated expressions can be created.

4. EFFECTIVE IMPLEMENTATION OF

OPERATORS

One approach to correct and yet effective
implementation is described further. The main ideas
are the following:

1. There is needed a static array of objects to hold
the temporary results that occur while evaluating
complex expressions. It can be called �array of
results� ant its items �result objects�. The array has
to be static because in the opposite case it would be
allocated and deallocated each time any expression
is evaluated.

2. Each time a result object is needed, the array will
be searched for the first free result object. This
means, each item of the array has to have a flag
signalizing that it is free or not.

3. After evaluating the expression the flags of all
the result objects have to be set to the free state so

48 Effective Way of Overriding C++ Operators for Matrix Operations

that the objects can be used again for evaluating next
expressions.

Since the result objects can be repeatedly used
for matrices of different dimensions, before they are
used, redim() method has to be called. Here one of
the key ideas of this implementation is used -
method redim() allocates memory only if the data
buffer needs to grow. In consequence, after a small
number of evaluations of expressions no more
memory reallocation will be done.

In the beginning, the objects in the array of
results have not allocated memory. The memory will
be allocated the first time the object is used (calling
method redim()). Since the array is static, memory
will be automatically destroyed when the program
ends.

The previous paragraphs imply that after many
different expressions were evaluated, the number of
allocated result objects will correspond to the
number of operators in the most complex expression
and the size of the largest memory block held by the
array of results is the same as the size of the largest
matrix that occurred in any expression.

Each operator could now ask the Matrix class for
a free result object, perform the operation and return
the reference to the result object. In this case, it is
not yet clear how to realize step 3. The result objects
will not be informed in any way that the whole
expression was evaluated and cannot reset their free
flags. The solution of the outlined problem is as
follows.

 The operators will return temporary objects by
value (not by reference). The temporary object will
reference to a result object that will hold the result of
the operation. As was explained after the first
implementation of operator +, the returned object is
two times copied before it is assigned to the
destination matrix. It is not possible to avoid
copying the objects, but it is not necessary to copy
the dynamically allocated data. However, for normal
operations the copy-constructor still has to allocate
memory and make a �deep� copy. Destructor in the
case of temporary objects must not deallocate the
data, since they only reference to the result objects,
but when it is called, it can set the flag of the
referenced result object to the free state � it
signalizes that the temporary object will be
destroyed and the result object gets free for a next
use.

Since, in a C++ program, all the temporary
objects that were created during evaluating an
expression are destroyed immediately after the
whole result was obtained, point 3 is satisfied. This
behavior was practically verified using Microsoft
and GNU C++ compilers.

Instances of the Matrix class will work in two
modes of operation:

A. Normal mode
In this mode the copy constructor allocates
memory using new operator, destructor
deallocates memory.

B. Temporary mode
In this mode the copy constructor copies pointer
to the static result object and sets its flag to non-
free state, destructor sets the flag of the result
object to the free state, but does not deallocate its
memory. Temporary objects are intended only
for internal purposes of methods and operators of
class Matrix.

There still remains one problem. When a
temporary object is returned, it is copied to another
temporary object. At this time, both the objects
reference to the same data in the result array and
also the same flag of the free state. Then, the first
object is destroyed. However, it also sets the flag to
the free state, in spite of the fact that the result object
should still hold the data for the second temporary
object. That is why some more sophisticated
mechanism is needed to lock and unlock result-
holding objects. Our solution uses a counter of
references (refCnt). If the counter is zero, the result
object is considered as free. The copy-constructor on
the temporary object increases the counter, while
destructor decreases it.

Figures 1 and 2 illustrate the two modes of
operation.

From the previous explanation the solution may
look to be rather complicated. Actually, only several
modifications are made to the class Matrix
implementation described above. Note: �n.c.� in the
program comments below means �no changes�.
 NULL

Fig. 1 Normal mode

Fig. 2 Temporary object and the array of results

pRefMatrix

pData
Matrix -
normal
mode

data �..

Array of the results

refCnt
=1

data �
pData

pRefMatrix
refCnt
=2

data �pData

Matrix -
temp.
mode

pData
data �refCnt

=0 pData

NULL refCnt
=0

Acta Electrotechnica et Informatica No. 2, Vol. 4, 2004 49

#define RESULT_MAX 1000

class Matrix
{
 int refCnt; //counter of references
 Matrix *pRefMatrix;

//NULL for normal objects,
//non-zero for temporary ones

 NUM *pdata; //buffer for data
 int dataLen; //length of allocated
 //buffer
 int m,n; //dimensions

static Matrix
resultArray[RESULT_MAX]; // array
 //of results

 static Matrix *pArrayTop;
 // pointer on
 //the first free element
public:
 Matrix()
 {
 refCnt=0;
 pRefMatrix=NULL;
 pdata=NULL;

 dataLen=m=n=0;
}

 Matrix(int m, int m);
 Matrix(const Matrix &A);

 ~Matrix();

 void copy(const Matrix &A); //n.c.
 void redim(int _m, int _n); //n.c.
 Matrix &operator=(const Matrix &A);
 //n.c.
 void setValue(NUM value); //n.c.

 NUM &operator()(int i, int j);//n.c.
 NUM getAt(int i, int j); // n.c.
 void setAt(int i, int j, NUM v);
 //n.c.
 void setTempObj(int _m,int _n);
 // creates a new temporary object

void operator+=(const Matrix &A);
 // n.c.

 Matrix operator+(const Matrix &A);
 Matrix operator*(const Matrix &A);
};

 Implementation of the methods that
changed follows. New version of the copy-
constructor behaves differently in the normal mode
and in the temporary mode. The temporary mode is
active if the pRefMatrix pointer is nonzero.

Matrix::Matrix(const Matrix &M)
//extended copy-constructor
{
 refCnt=0;
 pRefMatrix=M.pRefMatrix;

 if(pRefMatrix)
 //this object is temporary
 {

 pdata=pRefMatrix->pdata;
 // set reference to data
 m=pRefMatrix->m;
 n=pRefMatrix->n;

 ++pRefMatrix->refCnt;
 // lock the result object
 }
 else // normal operation
 copy(M);
}

Destructor decreases the reference count if the
object is in the temporary mode. Otherwise, it
deallocates memory.

Matrix::~Matrix()
{
 if(pRefMatrix)
 //this object is temporary
 --pRefMatrix->refCnt;
 else
 delete[] pdata;
}

The setTempObj() method links a temporary
object to a static result object of required
dimensions. It searches the results array for the first
free result object and sets references onto it. It would
be possible to search always from the beginning of
the array. Instead, rather more effective algorithm
was used � is stores the position of the last used
element of the result array and starts searching from
it. In most cases, only one step is needed to find the
next free element. However, the array will not
behave like a stack because the elements can set
reference counters to zero at any position and not
only on the top. The setTempObj() method will be
used instead of redim() for temporary objects.

void Matrix::setTempObj(int _m,int _n)
{
 while(pArrayTop->refCnt==0 &&
 pArrayTop>=resultArray)
 --pArrayTop;

 ++pArrayTop;

 assert(pArrayTop-
 resultArray<RESULT_MAX);
 assert(pArrayTop->refCnt==0);

 pRefMatrix=pArrayTop;
 ++pRefMatrix->refCnt;

 pRefMatrix->redim(_m,_n);

 pdata=pRefMatrix->pdata;
 m=pRefMatrix->m;
 n=pRefMatrix->n;
}

The static variable pArrayTop is initially set on
the beginning of the array:

Matrix *Matrix::pArrayTop=resultArray;

50 Effective Way of Overriding C++ Operators for Matrix Operations

Constant RESULT_MAX should be chosen to be
sufficiently large (e.g. 1000). It would be also
possible to implement resultArray as dynamic at the
cost of some more complexity. However, as noted
before, only limited number of elements will have
allocated memory (number of allocated elements
depends on how complicated expressions will be
used in the program). The other unallocated
elements use only a little amount of memory (about
24 bytes each). Therefore constant RESULT_MAX
can be chosen to be sufficiently large and the array
can have fixed size.

Finally, we can define operators + and * :

Matrix Matrix::operator+(const Matrix
&A)
{
 assert(m==A.m && n==A.n);

 Matrix B;
 B. setTempObj(m,n);
 //instead of redim() for temp.
 //objects

for(int i=0;i<m*n;i++)
 B.pdata[i]=pdata[i]+A.pdata[i];

 return B;
}

Matrix Matrix::operator*(const Matrix
&A)
{
 assert(n==A.m);

 Matrix B;
 B. setTempObj(m,A.n);
 //instead of redim() for temp.
 //objects

 for(int i=0;i<m;i++)
 for(int j=0;j<A.n;j++)
 {
 NUM sum=0;

 for(int k=0;k<n;k++)
 sum+=getAt(i,k)*A.getAt(k,j);

 B.setAt(i,j,sum);
 }
 return B;
}

The other operators and methods would be

defined in a similar manner. If they returns a matrix
result, they first create a temporary object as a local

variable on stack and then link it to a result object
using setTempObj(). The operators will have the
same priorities as if they were used with numbers.
The order of evaluating can be changed using
parentheses.

Although the overhead of frequent memory
allocation was eliminated, there is still some more
work done if compared to manipulating using
methods. For example, if a method that sums two
matrices and stores the result in the current object is
used:

C.sum(A,B);

there is no need to copy the result data to the C
object as if the operators + and = were used. This
may be especially true for special kinds of
expressions that can be much effectively evaluated
using special methods than by operators. Compare:

C=A*p+B*q; //p,q - numbers

and

C.linearCombine(A,B,p,q);

In general, for complicated expressions, one
more copying of the result data is insignificant. But
if operators are used, we get much better looking
and sinoptical program.

Eventually, if very large matrices are worked
with, using methods would be preferred to operators
for the reasons of saving memory � items in the
array of results will not be deallocated until the
program ends. It is however also possible to free the
memory held by the array on demand calling some
method.

A matrix library based on the described
principles was tested and successfully applied using
Microsoft Visual C++ and GNU C++ compilers.

BIOGRAPHY

Jan Cvejn (Ing., Ph.D.) was born in 1972. In 1996
he graduated at the Technical University of Liberec
(Czech Republic), where he still works as a tutor.
His professional interest is focused on the problems
of optimization, optimal control, algorithms and data
structures. He is also author and co-author of several
computer programs that were applied in industry.

