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SUMMARY
It may be easily to fix truthfulness value of monadic predicate formulae on the arbitrary cardinality subject domain. 

Because is often tested the correctness of statements reasoning, theirs premises and conclusion can be expressed through in 
this paper described formulae, it is very suitable to occupy with the monadic predicate formulae.   
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1. INTRODUCTION     

The truthfulness value of arbitrary monadic 
predicate formulae is possible always and simple to 
determine, i.e. predicate formulae, in which occur 
only one-placed of predicate independent on the 
cardinality of subject domain. It is consequently 
suited with described formulae of predicate logic of 
the first order to occupy one self.   

2. DESCRIBING OF MONADIC PREDICATE 
FORMULAE 

Assume a non-empty subject domain D (D )
of arbitrary cardinality (a finite, countable also an 
uncountable one). Let an individual unary relation

i ir r D  be given on the domain D  and a one-

place individual predicate pi ,i.e. pi : D  {0,1}: 
0x   for ix r and 1x  for ix r , carried by 

the relationship ri . Each unary predicate ip x

defines on the subject domain D(x D) a dichotomy 

(a partition having two classes 10 , ii DD )
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the nullary predicate 1,0d  (d D) defines on 

D a monadic partition    (D) = D .

Be given a system m
ii xp 1  of unary 

predicates xpi on D. The system of predicates 

defines on D a generally incomplete partition   
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to the predicates  pi (x) assume a value i  too. The 
partition 

1 2, ,..., mp p p D  is incomplete (complete)

if the union  of all classes of it is a proper   subset    
(is equal to) D. 

Example 1.: A system,
3

1i i
p x  of predicates      

pi(x) can determine the partition 
1 2 3, ,p p p D

0 0 1 1 0 1 1 1 0 1 1 1
1 2 3 1 2 3 1 2 3 1 2 3,  ,  ,   D D D D D D D D D D D D on D.

The partition is incomplete because  of 

1 2 3

3
, , 4  2p p p D ; on a class, e.g., 

1 1 0
1 2 3D D D  the predicates assume the values

1 2 1p x p x  a 3 0p x .

If the subject domain D in a plane is depicted by 
a rectangle or square, the incomplete as well as the 
complete partitions on D defined by the system of 
predicates on D can be conveniently depicted by 
means of k-dimensional (k = 0,1,...,m) Karnaugh 
map Mk which is recurrently defined for systems 
consisting of a nullary predicate - Mo, a single 

1Mxpi predicate, and m predicates mi Mxp ,

as can be seen in Fig. 1 (freely according to [1]).     

Fig. 1  Recurrent definition of Karnaugh map Mk
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Example 2.: Depict the incomplete partition D from 
Example 1 using a Karnaugh map M3    � Fig. 2.     
 

 
 

Fig. 2  Incomplete partition D from Example 2 

 
Let the formula of the first-order predicate logic 

comprising only unary predicates over the domain D 
be called a monadic predicate formula, e.g., x p(x) 

 x p(x). Each monadic predicate formula over the 
domain D comprising  m different unary predicates 
pi (x)  (i =1,2,...,m)  is apparently satisfiable in D 
only and only if  it is satisfiable in the classes of the 
incomplete partition 

1 2, ,..., mp p p D 2 . On the 

other hand, it is a tautology if and only if it is 
satifiable on all classes of the complete partition 

1 2, ,..., mp p p D . 

If we denote 
1 2, ,..., 1m

n

p p p j j
D , where 

, then 2mn
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x p x p j  and  

1
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x p x p j . In the Karnaugh map we 

will mark  by hatching all squares of 

 and  by griddling all squares of 

 [3]. Instead of inconvenient griddling we can 

place a single dot in the particular square of the map. 

xpx i    

dpi  xpx i    

dpi  

The monadic predicate formula P appears to be a 
tautology if its general closure is a tautology, e.g., if  

 is a tautology, in case that uPuuu l...21 k (k  = 

= 1,2,...,l) are all different free variables in the 
formula P. On the other hand the formula P is a 
tautology if the each square of its Karnaugh map is 
griddling or includes a dot too.     
 
Example 3.: Determine both by formally and 
mapping procedures if the formulae below are 
tautologies  (  is the implication operator): 
        a)  , xpxxpx     

        b) ,                          xqxpxxqxp        

 

        c)  xqxpxxqxp        

 
ad a)  on the one hand    

= xpxxpxxpxxpx           

)()( xx ppx  

 
 
where  =  means �to be a tautology�, on the other 
hand because  21,Dp , we obtain 

21    pp 21   pp

= 2121     pppp , 

 
ad b)  a general closure of the given formula is  

            )( xqxpxxqxpx  

xpxxqxpx

xqxpxxqxpx

     

       )(
 

 
 

and  because  4
1, jjqp D , we obtain 

1 1 1 2 3 4|=       &p q p p p p

& )  )& )( 3 42122 (   ( pppqp p

3 3 1 2 3 4&        &( )p q p p p p

))(  )(  )(  431 ppp 2(  ) p44   & ( qp

 
 
ad c) a general closure of the given formula is  
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which is not a tautology, and more over, because of 
the way in which the formula is organized it is not 
very convincing: 
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Karnaugh maps can be conveniently applied for 
examining correctness of statements reasoning, in 
case the premises and conclusions are monadic 
predicate formulae over D, are since if Horn�s 
reasoning  p1, p2,...,pm  q is given, where           
p

     
i (i =1,2,...,m) premises, q is the conclusion, and  

is the sign of inferring, then  p1, p2, �, pm q, if 
and only if 
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p q  4 , where  

means �to be contradictory to�. 

 

We introduce that all general reasoning  p1, 
p2,...,pm  q1, q2, �, qn can be expressed as 
sequence of  Horn�s reasoning  p1, p2, �, pm qj (j 
= 1, 2,�, n).    
 
Example 4.:  Decide about the correctness of the 
reasoning  

          xqxpx    

          xrxpx  

           xrxqx   

that is, state mapping whether the formula  

     

           

xrxqx

xrxpxxqxpx

xqxpx    xrxqxxrxpx         

is or is not a tautology: 

The above formula is a tautology and the reasoning 
is correct. 

 

Examle 5.:  Verify the correctness of the reasoning  
xqxpx    

xrxpx    

xrxqx   

that is, state mapping whether the formula 
xrxqxxrxpxxqxpx          is a 

contradiction: 

 
The given formula is not a contradiction and the 
argument is not correct. 

  
 

3. CONCLUSIONS  
 

Authors believe, that the decision of truthfulness 
values of monadic predicate formulae through 
Karnaugh maps is very simple. 
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