
Acta Electrotechnica et Informatica No. 2, Vol. 6, 2006 1

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

NEW APPROACHES IN SOFTWARE DEVELOPMENT

Cyril KLIMEŠ, Jaroslav PROCHÁZKA
Department of Informatics and Computers, Faculty of Natural Science,
University of Ostrava, 30. dubna 22, 701 03 Ostrava, Czech Republic,

E-mail: cyril.klimes@osu.cz, jaroslav.prochazka@osu.cz

SUMMARY
In the last few years we can meet modern approaches and concepts like agile methodologies, extreme programming and

model-driven development in software development. These new approaches use methods and technologies that allow us to
deliver valuable software products matching all requirements in time as well as decrease the cost of system operation and
maintenance. Paper deals with some of these approaches. Technical managers, developers and also management should
have at least brief knowledge of them because they can bring time and budget savings mainly in maintenance phase.

Keywords: software development, agile approaches, model driven approaches, rule based systems

1. INDRODUCTION

As hardware becomes more and more powerful
in time, it becomes also smaller and cheaper.
Consequently, software drivers and applications
using this hardware need to be changed too. As
software changes its extent, complexity and
therefore becomes more complicated. Developers
deal with extending users requirements.
Development process becomes more complex and
user or market requirements change often or are
vague and misty. Since requirements on software
ability and quality change and market and legislative
environment where software is used changes too, it
is necessary to change also software development
process and technologies.

Programming languages have their evolution as
well as the whole information technology field.
Present most spread languages (e.g. Java, C++, C#)
radically differ from their historical ancestors. The
main difference is in the rising level of abstraction.
In early programming years, the 1st generation
languages (1GL) were used. 1GL languages worked
on the lowest level of abstraction, i.e. with machine
code. The evolution continued across symbolical
languages (2nd generation) up to specialized domain
languages (database SQL, publication PostScript).
All these were mainly structured languages.

Many rules, principles and recommendations for
structural programming were methodically devised.
Since these were only recommendations, they had
no influence on error occurrences in programs.
However, most of these recommendations include
usage of objects. Consequently, object oriented
programming started to spread widely.

2. METHODS AND APPROACHES

EVOLUTION

Also methodologies have their evolution as
programming languages have. Methodologies reflect
current situation; that means they adapt software
development to contemporary requirements. We can
say that methodologies are guides that say what to

do during software development process, when it
should be done sand how it should be done. They
also help us not to forget anything and say what to
produce and also what not to produce (“we don’t
need it now”) in a particular phase of development.

In the beginning of the 50th, when the first
computers were programmed, we could not speak of
methodologies or engineering approaches to
software development yet. because nothing such
these did not exist. Software engineering as a new
discipline came in the 70th arose new discipline
called software engineering. Due to falling prices
and hence better availability, computers became
much more common than before. Consequently, the
first problems with delayed or never completed
projects, along with software maintenance problems
appeared. These problems resulted in software crisis.

To reduce costs and development time,
structured methodologies were defined as a first
approach to work around the crisis. These divided
development activities into phases, which allowed
developers to concentrate only on steps and issues
important for one particular phase (e.g. YSM,
SSADM).

Due to popularity of object-oriented
programming (OOP), the second attempt to solve
still ongoing crisis was an inception of object-
oriented methodologies. OOP success brought object
principles also into software development methods.
Object oriented methodologies don’t include only
objects and object oriented principles, but also the
best practices from structured methods. Among
others, e.g. Unified Process, Rational Unified
Process (now IBM) or original Czech methodology
OOMT (VSE Praha) belong into well known and
widely used object-oriented methodologies.

Since one can often read about models and
modelling in this article, it is necessary to mention
unified modelling language – UML, which is
nowadays widely used in many software projects.
We do not judge if it is right or not, but only outline
its role: UML serves for modelling, visualization,
specification and documentation of object-oriented
software systems components.

2 New Approaches in Software Development

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

3. AGILE METHODOLOGIES

Now we finally describe new concepts and
methodologies mentioned above. Selected group of
these new methods is generally called ‘agile’.
Rigorous methodologies have developed from
requirements valid in times in which they were
defined, which often mean they are older than 15 or
even 20 years. But times change and “the only
today’s guarantee is a change”. Changes can occur
in market competition, in market itself, or in
legislative. If we develop enterprise system using
rigorous methodology with an extensive analysis
and design, the development process can take one or
two years. It can happen that an enterprise changes
its intention in the meantime.

Nowadays, a customer still wants quality
software, but he rejects to wait for it for a long time.
Moreover, a customer often doesn’t know what to
expect from the future system and he cannot imagine
its functions. He only wants to do his business and
software should automate and support his enterprise
processes. He often realizes what his true
requirements are when he uses an application that
doesn’t really meet them. The objectives of agile
methodologies are to develop software more quickly
and effectively (which are today’s main
requirements), and to develop a system that
customer really needs and which is useful for him.
Small development teams and a tight cooperation
with customer are typical for agile methodologies.

Before year 2000, several respected IT
professionals (e.g. Kent Beck, Martin Fowler or
Alistar Cockburn) started to work on new
approaches to software development. Although they
didn’t work together, they found that their work had
many common features. When they met in 2001 in
conference in Utah, they formulated so called agile
manifesto [1]. This manifesto is not a modern matter
of several enthusiasts. All the involved worked on
many projects (from small to large ones, successful
and also unsuccessful ones) and all of them became
respected professionals. Moreover, all
methodologies came through its evolution (though
sometimes short) and were tested on suitable
projects. These approaches are based on one rule,
which says that the only way how to verify the
system is to implement it and hand it over to the
modified according to customer’s remarks and
further requirements. Agile manifesto authors prefer
(from [1]):
¾ Individuals and interactions over processes and

tools,
¾ Working software over comprehensive

documentation
¾ Customer collaboration over contract

negotiation
¾ Responding to change over following a plan.

Authors emphasise the following points:
¾ Our highest priority is to satisfy the customer

through early and continuous delivery of
valuable software.

¾ Welcome changing requirements, even late in
development. Agile processes harness change
for the customer's competitive advantage.

¾ Business people and developers must work
together daily throughout the project.

¾ Simplicity – the art of maximizing the amount
of work not done – is essential.

Such development process is often test-driven

(e.g. XP). It means that tests are written prior to
writing code. A test-suite exists and is run every
time when source code is changed. Application is
always thoroughly tested and it means fully
functional (without system errors). We can describe
these methodologies as the ones that prefer software
development over creation of sometimes extensive
and unnecessary documentation, use short
development iterations, emphasize cooperation with
customer and his active participation, produce
simple solution, and support continuous learning
thanks to tight feedback. Agile methodologies are
called e.g. these:
¾ Extreme Programming (XP, Kent Beck, 2000),
¾ Scrum (Ken Swaber, 1995),
¾ Crystal methodologies family (Alistar

Cockburn, 2000),
¾ Agile Modelling (AM, Scott Ambler, 2002),
¾ Feature-Driven Development (Jeff De Luca,

Peter Coad),
¾ Adaptive Software Development (Jim

Highsmith, 2000).

We stress the main common principles of agile
approaches. These are tight, every-day cooperation
between users and development team, simplicity,
early and continuous delivery of valuable software,
test-driven development and changing requirements
during development (user’s advantage). As
advantages, we can state these: welcome changes
(precondition); fulfilling user requirements; quicker
development; users have just the system they need
(no special functions without value, etc.). But there
are disadvantages as well: the main one is primarily
suitability for green-field engineering (obvious from
its role), it is not suitable for maintenance and
evolution. The next disadvantage is also important:
users have to communicate and cooperate with
development team every day; it means they are
responsible for success of the project too. As the last
one, we mention developer’s skills and behaviour.

Fig. 1 XP iteration development (source [4])

Acta Electrotechnica et Informatica No. 2, Vol. 6, 2006 3

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

Developers need to write readable code
according to standards, with valuable comments, and
need to follow the rule of simplicity in design and
code. More about agile methodologies can be found
e.g. in [2] and [3].

3.1. MDD (Model-Driven Development)

Agile methodologies are the first often
mentioned and discussed concept. The second one is
model-driven development. Typical representative is
OMG’s initiative called MDA – Model-Driven
Architecture. While the core of agile methodologies
is a quick development of functional software,
(documentation is mainly well structured and
commented source code), MDA emphasises
consistent documentation in the model and also code
form. Developers often only create models, without
seeing resulting application.

Development process using MDA consists of
several phases. MDA is not based on classical
programming, but more on model transformations.
The first model is a domain model without any
specific implementation rules. This model is
transformed into platform specific model and then
into application source code. Thank to this model-
code binding is whole project documentation in
consistent state. Changes in models are projected
into source code and vice versa. Maintenance of
such system is easier and consequently less
expensive. Another advantage is the form of models.
They are not “just pictures”, but executables that are
parts of the system.

One of disadvantages is that developer doesn’t
see any results (running application). He can work
for weeks or even months without being sure that the
result will be satisfactory.

MDA transformations use best practices and
well-tested standards. Standardised modelling
language UML is used for modelling. For
transformations, design patterns are used. They exist
for every field of SW development and abstractly
describe best practices, well-tried procedures and
developer’s experiences.

Developing using MDA has several phases; the
most interesting one is a transformation from
platform independent model to platform specific
model:
¾ Platform independent (analytical) model PIM is

extended by mappings, which define the use of
general transformation rules.

¾ For platform independent model (or for its part),
an implementation platform is chosen

¾ Based on mappings (and also according to
chosen platform), transformations to be
performed are given.

OMG says that MDA brings economical as well

as non-economical advantages. A lot of case studies
were created for this advantage and merit
verification. One of them should confirm (or reject)
this claim by developing server application. Two
experienced teams developed the same application

based on J2EE architecture. One team had MDA-
based tools at disposal, while the second one worked
using classical code-driven approach with IDE
(Integrated Development Environment) tools.
According to case study results, MDA team
developed application about 35% faster than second
team (MDA team worked for 330 hours, the second
on for 507.5 hours). However, these numbers cannot
act as an absolute measure, as the values may
radically differ for different projects.

The main principles of MDD are modelling and
transformation. Models are mapped and transformed
according to patterns and templates. Now we list
some MDD advantages. This approach shortens
development cycle; includes best practices through
patterns; is platform independent (patterns for J2EE,
.NET, WS, CORBA); there exist a lot of MDD tools
on market; is OMG’s standard (based on UML,
MOF, XML); includes automated testing. MDD is
also suitable for maintenance (not only for green-
field engineering). Our opinion is that MDD
developer should be skilled and patient modeller
with sense for details. He can model for weeks
without any result in the functional application form,
which can be frustrating. This issue we present as a
disadvantage. Another one is a possibility of vendor
lock-in; there have to exist patterns for our platform
and architecture. But it seems that advantages bring
more than disadvantages can take.

3.2. Agile MDA

There exists also agile form of MDA in
development approaches that combines ostensibly
opposite ideas – agility of agile approaches and
modelling. Agile MDA is based on presumption that
MDA’s source code and executable models are the
same. This implies use of agile principles (testing,
short iterations, etc.) also on executable models, not
only on source code. This approach (complete
models, lastly code) can resemble rigorous methods.
But there is a difference between models. MDA
models are executable and thus different from
rigorous method models that are “simple pictures”.

3.3. Agile Modelling - AM

Till now, we explained some of the new concepts
and ideas. Another one we discuss is Agile
Modelling – AM. Author of AM is very well known
IT specialist Scott W. Ambler. We have already
listed AM in agile methodologies together with XP
or Crystal. But AM is not a new complex
methodology, it is more an extension of existing
ones (see Fig. 2). As author says, AM is practically
based method (not an academic theory) for an
effective software systems modelling and
documentation. AM is a suite of guides and
procedures presented by principles and values for
everyday professional use.

A frequent problem of developers using strict,
rigorous methodologies is creating a lot of
documentation, often unnecessary or never used. A

4 New Approaches in Software Development

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

typical example of such problem is creating of all
UML models. Of course, documentation is needed,
but with reasonable amount. AM approaches try to
outline how to agile model and how to create only
needed documentation. Apart from other
methodologies AM do not say, what models to use
and what to create. It fully depends on developer’s
decision. AM does not restrict only one set of
models (e.g. only UML models). As shown on figure
2 depicts, it is possible to use AM together with
RUP (Rational Unified Process) or EUP (Enterprise
Unified Process) methodologies as well as with agile
ones (XP, FDD, etc.). Besides, AM uses some XP
principles and originally was called Extreme
Modelling – XM.

Fig. 2 AM and its scope

4. OTHER DEVELOPMENT APPROACHES

No matter that they can radically differ, all the

above mentioned methods and approaches have one
common point. An application should be always
hand-coded (except MDD) by team of developers. A
little bit different approach is presented specifically
by MDD and its variants that we have already
mentioned. Using MDD, we do not need to hand-
code because the final version of application is
generated from executable visual model. This brings
us to another development approach that is also
already used nowadays. This is automatic code
generation.

4.1. Code generation

Code generation is not an innovation; it is a
technique used in everyday work, although we often
don’t know about it. We can name generators in the
form of compilers, documentation generators (e.g.
Javadoc) or HTML generators. Use of generators
brings several advantages, the main are:
¾ Increasing productivity of labour – thanks to

automatic generation.
¾ Increasing code consistency – code is generated

using still the same template or pattern, so code
has the same quality in every part (the quality of
code depends on the quality of template).

¾ Reducing the count of errors – there are no
typing errors or forgotten mistakes after copy
and paste in the generated code, etc.

Generators are most often used for user interface

generation (JSP pages, Swing GUI) and for database
scheme generation. Concerning application logics,
this approach is not so spread, because it is not so

easy to describe the logics using meta-data and rules.
The following figure depicts needed generator
artefacts.

Fig. 3 Code generator components.

There are several ways how to generate source
code. Some of them are listed below [5]:
¾ Templates + filtering – the easiest way, we filter

off part of model text specification (e.g.
XML/XMI file) and then apply template.

¾ Templates + meta-model – extends the previous
pattern, if clear architecture to implementation
platform mapping exist, meta-model is created
and templates are applied.

¾ Frame processing – source code is generated as
a result of frame evaluation; frames are
typically functions.

¾ Direct transcription – we examine text
specification of a model (e.g. XMI file). If a
given expression is found, it is written into
output file (source code): if found

modelElement then write(“CodeElement”).

As said above, the easiest way is application of

template and filtering pattern. Every visual model
can be stored as text file using XML (or XMI). The
following example shows text form of a part of a
simple visual model.

<UML:Class xmi.id='802f4_1105_1'>
 <UML:ModelElement.name >
 Třída
 </UML:ModelElement.name>
 <UML:ModelElement.visibility
xmi.value='public' />
 <UML:Classifier.feature >
 <UML:Attribute xmi.id='802f4_1105_2'>
 <UML:ModelElement.name >
 atribut1
 </UML:ModelElement.name>
 <UML:ModelElement.visibility

 xmi.value='private'/>
 </UML:Attribute>
 </UML:Classifier.feature>
</UML:Class>

This XMI text is simplified using filtering and

the following XSLT template is consecutively
applied:

<xsl:template match=“class“>
 public class <xsl:value-of select=“name“/>
{

Acta Electrotechnica et Informatica No. 2, Vol. 6, 2006 5

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

 <xsl:apply-templates select=“attribute“>
}
</xsl:template>
<xsl:template match=“attribute“>
 private <xsl:value-of select=“@type“/>
 <xsl:value-of select=“@name“/>;
</xsl:template>

The result can then look like this:

Public class Třída {
 private int atribut1;
}

We can emphasize one rule: everything
repeatable can be automated. When developing code
generator, we should obey the following rules. The
best approach is to develop a part of application
source code (not a generator, it is obviously hand-
coded) by hand. Such procedure helps developer to
understand used technology or framework. Hand-
coded source code can be then used for generated
source code control. Testing suites for generated
source code should also be written. They check
correctness of functionality as well as weird
constructions and behaviour. Automated robust
source code controls and static code control are also
good thing as well as marking generated code in
source code files.

4.2. Rule based systems

Quite different approach to software
development, which is really worth to be mentioned,
is using so called business rule engines – BRE. The
convergence of market to such systems is predicted
by Gartner group in one of its studies. BRE systems
do not describe processes (we do not bind process by
programming code), because these can change.
Instead of describing processes, we describe general
rules valid in the whole domain. When developing
application, we define basic concepts, their relations,
and rules for their manipulation. After analysis, thes
system is not hand-coded, but the source code is
automatically generated according to rules or BRE
directly interprets these rules. Rules in such systems
are in formalized natural language form that is
understandable for domain workers involved
(common employees as well as managers). Thanks
to this, it is not necessary for these people to talk
developer’s language while developing application.
Users work with well known concepts like bill,
project, milestone, contract, manager, etc. and
common rules like: “All unpaid bills should be listed
in debt-book”.

When enterprise processes change, we do not
need to alter the system, because the domain rules
are still valid. When rules change too, e.g. because
of legislation change, we only update given rule or
add a new one. Rule systems have these advantages:
they communicate with user using his language;
their development is not so time consuming as
classical development (and, hence, not so
expensive); implementation of changes is also

cheaper. Rule based systems are sometimes called
“personal assistants” rather than “software”. Such
system is really more an assistant than a common
program. What should rule based systems include
can be found in [7].

5. CONCLUSION

New approaches have a common feature, which
is quick application development together with tight
cooperation with customer. However, each of these
approaches use different way to reach this. Because
of their philosophy, some of agile methodologies
can be used only for green-field engineering.
However, most of mentioned approaches can be
profitably used for system change implementation.

One can expect such methodology’s evolution
because of customer’s requirements (SW quickly
with quality). It is important to emphasize that agile
methods are not a universal solution for existing
problems. Their usefulness shows up in rather
smaller teams and small and middle projects with
unclear (vague) or often changing requirements. For
complex and large-scale systems, it is often essential
to use rigorous methods (milestones are planed and
accepted by customer, etc.).

For some parts of an application, code generation
is used more and more. Code generation can be used
in rigorous methodologies, as well as in agile ones.

One of possible development approaches in the
future is a rule-based system, which reduces time
needed for development and also simplifies changes
implementation.

How one can see, an evolution of methodologies
and software development approaches is an
interesting topic and we can be optimistic about its
contribution to fulfilling customers needs and
lowering projects and maintenance costs.

REFERENCES

[1] Agile manifesto web. Available on:

www.agilemanifesto.org
[2] Kadlec, V.: Agilní programování, Computer

Press, Brno 2004, ISBN 80-251-0342-0, (in
Czech)

[3] Ambler, S. W.: Agile modeling. John Wiley &
Sons, 2002.

[4] Extreme programming web. Available on:
www.extremeprogramming.org

[5] Voelter, M.: A catalog of patterns for program
generation. Document available on:
 www.voelter.de

[6] Herrington, J.: Code generation in action,
Manning 2004, ISBN 1930110979.

[7] Business Rules Group web. Available on:
www.businessrulesgroup.org

6 New Approaches in Software Development

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

BIOGRAPHIES

Cyril Klimeš graduated (Ing.) in 1976 at the Faculty
of electrical engineering at Brno university of
technology. He got his CSc. degree in 1985 at VŠB-
Technical university of Ostrava and in 1991 he
defended his habilitation at the same university.
Now he works at the department of Informatics and
computers of the Faculty of Science at University of
Ostrava where he is department manager. He
worked also in OKD and he has managed computer
company OASA Computers, s.r.o. He is author and
co-author of tens of publications and co-author of 3
patents. His scientific research is focusing on
computers architecture, operation systems,
information system development and e-learning.

Jaroslav Procházka was born on the 15. 7. 1978. In
2003 he graduated (MSc.) at the department of
Informatics and Computers of the Faculty of Science
at University of Ostrava. Now he study doctoral
program (Ph.D.) also at University of Ostrava with
specialization on the field of process automation and
software development. Since 2003 he is working as
a tutor with the Department of Informatics and
Computers and since 2005 he is working as analyst
and Java developer in Crux IT. His scientific
research is focusing on process automation and new
development methods as well as software evolution
(implementing changes and enhancements).

