
Acta Electrotechnica et Informatica No. 2, Vol. 6, 2006 1

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

INTERFACES AND ADAPTERS TO DATABASES USING STANDARD TEMPLATE
LIBRARY

Matúš CHOCHLÍK, Karol MATIAŠKO
Department of Informatics, Faculty of Management Science and Informatics, University of Žilina, Univerzitná 8215/1,

010 26 Žilina, Slovak Republic, E-mail: matus.chochlik@fri.utc.sk, karol.matiasko@fri.utc.sk

SUMMARY
This paper presents a set of interfaces and cooperating adapters that greatly simplify the access to datasets, which are

the result of a query to a database system in applications developed in the C++ programming language. These interfaces
isolate the implementation of the database system from the client code and the adapters allow accessing the records of the
dataset, in a more natural way, as native C++ structures possibly using the algorithms from the C++ Standard template
library (STL).

Keywords: Databases, Datasets, Datastructures, STL, Adapters, C++

1. INTRODUCTION

Since the database systems [5] belong to the
most commonly used information systems, it is
necessary or at least convenient for software
developers to have means to access the stored data in
a “friendly” manner, in order to achieve rapid
development and easy maintenance of an database
application. Well-designed abstraction layer for data
access, can save time and other costs when a change
in the implementation or even in the type of the
database system is needed. Via this layer the
programmer can access data which are physically
stored in a SQL database, text or binary file located
on a local or a network media, etc, without the need
to know anything about the details of the actual
implementation [7-9].

Because the interface does not change the
concrete application code does not need to be
rewritten, recompiled and usually not even re-linked,
when the implementation of the database system
changes. This idea is not new and there were several
attempts to develop a standardized interface for data
access.

The most popular interface is probably the
ODBC: “Open Database Connectivity (ODBC) is a
widely accepted application programming interface
(API) for database access. It is based on the Call-
Level Interface (CLI) specifications from X/Open
and ISO/IEC for database APIs and uses Structured
Query Language (SQL) as its database access
language” [2],[6].

Another important point about developing
database applications is, that the data is usually
processed in algorithms written by the developer to
achieve the desired functionality. The developer
therefore must often access the data, i.e. through the
ODBC, load them into programming language data
structures and only afterwards process them. This
step of loading data to language-native structures is
very common, thus it would be very helpful, to have
another layer, which would access the data, load it
into defined structures and present them to the
developer in this form.

Because the C++ is one of the most standardized
[4] and widespread programming languages, we are
going to explore the possibility to develop such layer
in it.

In C++ the popular way to store and handle sets
of data, is to use the standard template library.
According to [1] “The Standard Template Library,
or STL, is a C++ library of container classes,
algorithms, and iterators; it provides many of the
basic algorithms and data structures of computer
science. The STL is a generic library, meaning that
its components are heavily parameterized: almost
every component in the STL is a template. “

One of the important things about the STL is that
it is defined by the ANSI/ISO standard for the C++
language [4]. This standard defines various high
level concepts like general containers, sequences,
iterators and algorithms and these concepts are then
gradually refined to the level of concrete containers
(vector, set, map, list,...), concrete iterators for these
containers and concrete algorithms (like find, count,
sum, replace, accumulate, sort, and many more).
These structures and algorithms are implemented by
experts in the field of data structures and algorithms,
and with the exception of some marginal cases of
use, they are the most efficient implementations of
the specific concepts.

On the other hand, the result of a query to a
database system is often referred to as dataset. From
a programmer’s point of view, it contains a set of
rows where each row or record can be represented
by a C++ structure. So we can think of dataset as of
a container of objects, which is very similar to the
concepts defined in STL. Furthermore the pointer to
a row in a dataset is similar to the concept of an
iterator. Most of the STL algorithms operate on
containers or iterators and with an appropriate
adapter the result of a database query could by
passed directly to a basic STL algorithm or to a
more advanced, application defined, algorithms.

The goal of this work is to design the interfaces
and adapters, which would allow using the results of
a database query in a more natural way in the C++
language, compatible with the STL library.

2 Interfaces and Adapters to Databases Using Standard Template Library

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

2. SHORT OVERVIEW OF THE BASICS OF
STL

The full documentation to STL can be found for

example in [1],[4] . The types of objects, that the
STL defines, which are of interest to us, are:

2.1. Containers

The definition of the container concept in [1]
follows “A Container is an object that stores other
objects (its elements), and that has methods for
accessing its elements. In particular, every type that
is a model of Container has an associated iterator
type that can be used to iterate through the
Container's elements”. From the container are
further derived more specialized concepts like
Forward Container, Reversible Container, ...,
Sequence, Front Insertion Sequence, Back Insertion
Sequence, Associative Container, and so on. Then
there are defined concrete types of containers like,
vector, deque, list, slist, set, map, ..., which are
models of these concepts.

2.2. Iterators

According to [1] “Iterators are a generalization
of pointers: they are objects that point to other
objects. As the name suggests, iterators are often
used to iterate over a range of objects: if an iterator
points to one element in a range, then it is possible
to increment it so that it points to the next element.”
The concept of Trivial Iterator is a basis for Input
Iterator, Output Iterator, Forward Iterator,
Bidirectional Iterator and Random Access Iterator.
Iterator as a design pattern is also described in [3].

2.3. Algorithms

The STL defines several dozens of basic
algorithms of various types including non-mutating
and mutating container algorithms, sorting and
searching, and various numeric algorithms, which
are with the help of the functional objects
combinable.

Function objects

[1] Describes function objects as: “A Function
Object, or Functor is simply any object that can be
called as if it is a function. An ordinary function is a
function object, and so is a function pointer; more
generally, so is an object of a class that defines
operator().”

The concept of Function object includes
Generator, Unary Function, Binary Function,
Predicates and various Adaptable functors.

3. CONTAINER AND ITERATOR
INTERFACES

The first step to is to create an abstraction layer

between the client and the actual implementation of

the dataset. This implementation could be anything
from the ODBC API, or database libraries, which
are specialized to access specific database systems
like MySQL or PGSQL, or it could be a simple
library accessing data in XML files on a shared
network drive. Important for the developer is that the
interfaces, which are used to access the data, do not
change. These interfaces should have methods
similar to the STL concepts; dataset should be
derived from the Container and dataset pointer from
the Iterator concept. In the section 6, are declared the
actual interfaces, which are abstract C++ classes,
having similar methods to the methods defined by
the STL concepts.

The main difference is that the interfaces will not
be parameterized which means that they do not
know anything about the type of the data stored in
the container or pointed-to by the iterator. The
interfaces for container and iterator refer to the data
via untyped (void*) pointers, which can lead to
several problems if the interfaces are used directly.
Special adapters described in sections 4 and 5 solve
this issue.

4. TEMPLATE ADAPTERS

One of the most obvious differences between the
STL classes and most of the dataset implementations
is, that the STL classes are parameterized, which
means that they are implemented using templates
and that the concrete containers, iterators,
algorithms, etc. are specialized to work with a
specific data type i.e. a structure or a class. The
information about the data type is statically
compiled into the code. This has several advantages,
like strict type checking which helps to avoid
explicit type casting and possible resulting type
mish-matches, and also usually leads to better
performance.

In the datasets, the data in records are accessed
field by field in a dynamic way. The developer can
programmatically find out the count and the type or
name of the distinct attributes of a dataset. One can
also query the values of the fields of a single row of
a dataset. This dynamic access has several
advantages, but these are rarely needed. In most
cases the programmer has created some C++ data
structures representing the data in database and then,
after the query, she/he iterates through the resulting
dataset and loads the data field by field into
instances of the defined structure. Much more
convenient would be if the result of the query could
be adapted to a parameterized container that has
information about the C++ data-structure and does
the loading from dataset row fields to an instance of
the structure automatically.

The resulting design should allow to use both of
these approaches. The static, when the user exactly
knows the structure of the resulting dataset and
wants to use C++ structures containing the data and
the dynamic record field browsing when necessary.

Acta Electrotechnica et Informatica No. 2, Vol. 6, 2006 3

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

5. ADAPTERS TO THE STL

Similar kind of adapters can be used to adapt the
abstract interfaces for containers and iterators
exactly to the STL concepts. This means that the
adapters have all the methods defined by the
concepts of Container and Iterator and can be used
in STL algorithms.

6. DESIGN

In this section we define the interfaces for
abstract containers and iterators, which can be
implemented to represent various datasets and
dataset pointers.

Interface iContainer, declares basic container
functionality:

interface iContainer : extends iBase

{

virtual ~iContainer(){ }

virtual IIterator GetIterator(void) =
0;

virtual bool SetElemCount(int
paNewCount) = 0;

virtual int GetElemCount(void) = 0;

virtual int GetMaxElemCount(void) = 0;

virtual bool IsEmpty(void) = 0;

virtual void Clear(void) = 0;

virtual IIterator Add(void* paPtrVal)
= 0;

virtual size_t Remove(void* paPtrVal)
= 0;

virtual bool Contains(void* paPtrVal)
= 0;

};

Interface iRevContainer, in addition to a
iContainer can return reverse iterator of its elements.

interface iRevContainer : extends iContainer

{

virtual ~iRevContainer(){ }

virtual IIterator GetRevIterator(void)
= 0;

};

Interface iRAContainer, allows indexed access to
its elements.

interface iRAContainer : extends iContainer

{

virtual ~iRAContainer(){ }

virtual void* GetPtrByIndex(size_t
paIdx) = 0;

virtual IBiDiRAIterator
GetIteratorByIndex(size_t paIdx) = 0;

};

Interface iRevRAContainer, is merely a
combination of iRevContainer a iRAContainer.

interface iRevRAContainer : extends
iRevContainer, extends iRAContainer

{

virtual ~iRevRAContainer(){ }

};

Interface iAsocContainer declares methods for
asssociative element storing and retrieval.

interface iAsocContainer : extends
iContainer

{

virtual ~iAsocContainer(){ }

virtual IIterator Insert(void*
paPtrVal) = 0;

virtual void Insert(const IIterator&
paFirst, const IIterator& paLast) =0;

virtual size_t Erase(const ISearchKey&
paKey) = 0;

virtual size_t Erase(const IIterator&
paPos) = 0;

virtual size_t Erase(const IIterator&
paFirst, const IIterator& paLast)=0;

virtual size_t Count(const ISearchKey&
paKey) = 0;

virtual bool Has(const ISearchKey&
paKey) = 0;

virtual IIterator Find(const
ISearchKey& paKey) = 0;

virtual IIterator LowerBound(const
ISearchKey& paKey) = 0;

virtual IIterator UpperBound(const
ISearchKey& paKey) = 0;

};

There are also interfaces for sequence concepts.

interface iSequence : extends iContainer

{

virtual ~iSequence(){ }

virtual void* First(void) = 0;

virtual IIterator Insert(const
IIterator& paPos, void* paPtrVal) = 0;

virtual void Insert(const IIterator&
paPos, size_t paCount, void* paPtrVal)
= 0;

virtual void Insert(const IIterator&
paPos, const IIterator& paFirst, const
IIterator& paLast) = 0;

virtual IIterator Erase(const
IIterator& paPos) = 0;

virtual IIterator Erase(const
IIterator& paFirst, const IIterator&
paLast) = 0;

virtual void Resize(size_t paCount,
void* paPtrVal) = 0;

virtual void Resize(size_t paCount) =
0;

};

4 Interfaces and Adapters to Databases Using Standard Template Library

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

interface iFISequence : extends iSequence

{

virtual ~iFISequence(){ }

virtual void* Front(void) = 0;

virtual void PushFront(void* paPtrVal)
= 0;

virtual void PopFront(void) = 0;

};

interface iBISequence : extends iSequence

{

virtual ~iBISequence(){ }

virtual void* Back(void) = 0;

virtual void PushBack(void* paPtrVal)
= 0;

virtual void PopBack(void) = 0;

};

Interface iIterator for objects which are used to
iterate through the elements of a container.

interface iIterator : extends iBase

{

virtual ~iIterator(){ }

virtual bool First(void) = 0;

virtual void Next(void) = 0;

virtual bool Done(void) = 0;

virtual ISearchKey GetActualKey(void)
= 0;

virtual void* GetActualPtr(void) = 0;

virtual void SetActualByPtr(void*
paNewValue) = 0;

};

interface iBiDiIterator : extends iIterator

{

virtual ~iBiDiIterator(){ }

virtual bool Last(void) = 0;

virtual void Prev(void) = 0;

virtual bool RevDone(void) = 0;

};

interface iRAIterator : extends iIterator

{

virtual ~iRAIterator(){ }

virtual void* GetPtrByIndex(int paOfs)
= 0;

virtual void SetPtrByIndex(int paOfs,
void* paNewValue) = 0;

virtual void Translate(int paOfs) = 0;

virtual IRAIterator Translated(int
paOfs) = 0;

virtual int DistanceTo(const
IRAIterator& paIterator) = 0;

virtual bool LessThan(const IIterator&
paIterator) = 0;

};

As we have mentioned, interfaces refer to data
using untyped void* pointers. Unfortunately this is
necessary, because we don't want to have template
interfaces and because of that, we are loosing some
of the advantages of C++ type checking. These
interfaces should not be used directly, but always
through the template adapters, which are wrapping a
pointer to an interface and have similar methods like
the interfaces but instead of void* they use typed
references. In this way we are gaining back some of
the type safety. The only issue we must be aware of,
is that we must know to what element data type the
implementation of iterator or container is referring
via the void* and use the correct template adapter.

An example of template wrapper declaration for
iIterator. All these wrappers are already
implemented and can be easily reused.

// this wrapper is actually derived from a
base non-template wrapper where all

// the methods that are data-type
independent are implemented

template <typename tpaDataType> class
IIterator_T : public IIterator

{

public:

/** constructors destructors of the
wrapper */

/** the actual implementation is
little more complicated because of

* the error checking, but the idea is,
that the wrapper method

* calls the method GetActual of the
interface and does the typecasting.

* Using this technique, we then
implement all the methods of the
interfaces

* which are referring to the data

*/

__INLINE const tpaDataType&
GetActual(void) const

{

return *((tpaDataType*)(this-
>GetInterface()-
>GetActualPtr()));

}

};

The real concern to the developer is how to use

the wrappers. The wrapper classes implement the ->
operator so we can syntactically use them like
pointers, when we call methods that are stored-data-
type independent, for example the methods First(),
Next(), Done(), of the iterator interface. We could
also call the other methods and do the typecasting
manually, but this is inconvenient so we can call the
wrapper methods via the . (dot) operator. An
example follows:

// assume we have declared a class CData

class CData { ... };

Acta Electrotechnica et Informatica No. 2, Vol. 6, 2006 5

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

// this is a getter class which returns to
the client an implementation of iterator

// using the interface iIterator

class CGetter {public: iIterator*
GetCDataIterator(void){ ... } } Getter;

// the actual implementation of the
iIterator returned by GetCDataIterator MUST

// refer to objects of type CData by the
void* in its methods (GetActualPtr(), ...)

// thanks to the constructors of the
IIterator_T wrapper we can do this
initialization

IIterator_T<CData> I = Getter-
>GetCDataIterator();

// we declare also a function which uses an
instance of the CData class

void ProcessCData(const CData& paData);

//the data-type independent methods are
called via the -> operator

I->First();

//the data-type dependent methods of the
wrapper are called via the . operator

while(!I->Done())

{

//GetActual() Returns a constant
reference to CData

ProcessCData(I.GetActual());

I->Next();

}

Because we want to use our abstract interfaces in

STL algorithms, we have declared also similar
wrappers which are compatible with the STL
concepts of containers and iterators.

// getter which returns an iterator to
integers according to some type of query

class CValueDB{public: iIterator*
GetValues(iQuery){ ... } } ValueDB;

//

// we declare and initilize three stl
compatible iterators

// IA and IB are iterators to ranges
returned as a result of different queries

// END is a singular iterator (because it is
not initialized) its method

// END.IsSingular() returns true

// If IA->Done() == true (and .IsSingular()
== true) then (IA == END)

// this is necessary to support the STL
ranges, on which most of the algos are
working

IIterator_STL<int> IA(ValueDB-
>GetValues(QueryA));

IIterator_STL<int> IB(ValueDB-
>GetValues(QueryB));

IIterator_STL<int> END;

// some examples of usage in STL algorithms

IA->First(); IB->First();

cout << "Ranges are Equal: “ <<
std::equal(IA, END, IB);

//

IA->First();

cout << "Count of ones: " << std::count(IA,
END, 1) << endl;

IA->First();

cout << "Count of tens: " << std::count(IA,
END, 10) << endl;

IA->First();

std::vector<int> V(N); // N > count of
elements of IA

std::copy(IA, END, V.begin());

//

IA->First(); IB->First();

cout << "Dot product: " <<
std::inner_product(IA, END, IB, 0) << endl;

// a little more advanced example using also
some user defined algorithms

IB->First();

cout << "First odd: ";

cout << std::find_if(

IB, END,

my_compose2<int>(

std::equal_to<int>(),

my_compose2<int>(

std::modulus<int>(),

std::bind2nd(std::plus
<int>(), 1),

my_constant<int>(2)

),

my_constant<int>(0)

)

).GetActual() << endl;

We should always have on mind that the iIterator

(and iContainer) interfaces can represent very
distinct types of iterators (containers), from C/C++
array iterators (actually pointers), file reading
classes, XML documents, SQL database data-set
pointers, etc. The advantage of this approach is can
clearly be seen on the fact that when the
implementation of the class behind the interface
changes, we don't need to rewrite, recompile or even
re-link the code. This advantage is bought at the cost
of decreased performance because of the extra de-
references and virtual calls, and imposes some
potential risks of type-casting related bugs, but in
many cases this approach can save a lot of
development and maintenance work in cases where
the performance of the database system is not very
critical.

7. CONCLUSION

The concepts and their implementation presented
in this paper should allow much faster designing and
development of those database applications, where
the flexibility and extensibility is the main goal. The
contribution of this work is twofold; First, the
abstract interfaces hide the details of the actual

6 Interfaces and Adapters to Databases Using Standard Template Library

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

database implementations thus allowing us to do
changes of this subsystem without affecting the rest
of the source code and second, the cooperation with
the STL which allows to use existing algorithms
which are fairly common because the STL is widely
used in development of applications where
processing of datasets is involved.

REFERENCES

[1] Standard Template Library Programmer's Guide

http://www.sgi.com/tech/stl/
[2] Microsoft Developer Network

http://msdn.microsoft.com/library/
[3] Erich Gamma, Richard Helm, Ralph Johnson,

John Vlissides, Design patterns – Elements of
Reusable Object-Oriented Software, Pearson
Education, Inc. Addison-Wesley Professional
1995

[4] Dirk Louis, Petr Mejzlík, Miroslav Virius,
Jazyky C a C++ podle normy ANSI/ISO, Grada
Publishing, 1999

[5] Matiaško, K.: Databázové systémy, EDIS 2002
[6] WIKIPEDIA, http://en.wikipedia.org/wiki/Odbc
[7] Kollár, Ján: Paralelné programovanie.

Academic Press elfa, s.r.o., Košice, 1999,
monografia, ISBN 80-88964-14-8, 96pp.

[8] Kollár, Ján: Metódy a prostriedky pre výkonné
paralelné výpočty. Academic Press elfa, s.r.o.,
Košice, 2003, Edícia monografií FEI TU v
Košiciach, 110 pp., ISBN 80-89066-70-4

[9] Kollár, Ján: Process Functional Programming.
Proc. 33rd Spring International Conference
MOSIS'99 - ISM'99 Information Systems
Modelling, Rožnov pod Radhoštěm, Czech
Republic, April 27-29, 1999, ACTA MOSIS
No. 74, pp. 41-48, ISBN 80-85988-31-3

BIOGRAPHIES

Matúš Chochlík was born in 1981. In 2005 he
graduated in the study field of Information and
Management Systems at the Faculty of Management
and Informatics of the University of Zilina. Since
2005, he is working like a PhD student at this
faculty. His research and employment activities have
been oriented in the field of object-oriented and
distributed databases, simulation and computer
graphics.

Karol Matiaško was born in 1952. In 1975 he
graduated in the study field of Cybernetics at the
Faculty of Electrical and Mechanical engineering of
the University of Transport and Communications in
Žilina. He received PhD in Technical Cybernetic in
1988 at University of Transport and Communication
in Žilina like employee of the Research Institute of
Transport. Since 1990 he was joined with the
Faculty of Management Science and Informatics of
University of Žilina and his research and educational
activities have been oriented in the area of Database
system, Distributed processing and Data processing.

