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SUMMARY 
In this paper, an optimal fuzzy gain scheduling of PI controller is adopted to speed control of an induction motor. First, a 

designed fuzzy gain scheduling of PI controller is investigated, in which fuzzy rules are utilized on-line to adapt the PI 
controller parameters based on the error and its first time derivative. However, the major disadvantage of the fuzzy logic 
control is the lack of design techniques, for this purpose we propose an optimization technique of the fuzzy logic adapter 
parameters using genetic algorithm. The effectiveness of the complete proposed control scheme is verified by numerical 
simulation. The numerical validation results of the proposed scheme have presented good performances compared to the 
fuzzy controller which have parameters chosen by the human operator. 
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1. INDRODUCTION 
 

Nowadays, like a consequence of the important 
progress in the power electronics and of micro-
computing, the control of the AC electric machines 
known a considerable development and a possibility 
of the real time implantation applications. It is 
widely recognized that the induction motor is going 
to be the main actuator for industrial purposes [1]. 
Indeed, as compared to the DC machine, it provides 
a better power/mass ratio, a simpler maintenance 
and relatively lower cost. However, it is traditionally 
for a long time, used in industrial applications that 
do not require high performances, this because its 
control is a more complex problem, its high non-
linearity and its high coupled structure. Furthermore, 
the motor parameters are time-varying during the 
normal operation and most of the state variables are 
not measurable. On the other hand, the direct current 
(D.C) machine was largely used in the field of the 
variable speed applications, where torque and flux 
are naturally decoupled and can be controlled 
independently by the torque producing current and 
the flux producing current.  Since Blashke and Hasse 
have developed the new technique known as vector 
control [1, 2, 3], the use of the induction machine 
becomes more and more frequent. This control 
strategy can provide the same performance as 
achieved from a separately excited DC machine, and 
is proven to be well adapted to all type of electrical 
drives associated with induction machines[4]. 

The most widely used controller in the industrial 
applications is the PID-type controllers because of 
their simple structures and good performances in a 
wide range of operating conditions [5]. In the 
literature, the PID controllers can be divided into 
two main parts: In the first part, the controller 
parameters are fixed during control operation. These 
parameters are selected in an optimal way by known 
methods such as the Zeigler and Nichols, poles 

assignment... etc.  The PID controllers of this part 
are simple but cannot always effectively control 
systems with changing parameters or have a strong 
nonlinearity; and may need frequent on-line retuning 
[6]. In the second part, the controllers have an 
identical structure to PID controllers but their 
parameters are tuned on-line based on parameters 
estimation of the process.  Such controllers are 
known as adaptive PID controllers. 

In control by fuzzy logic [8, 9], the linguistic 
description of human expertise in controlling a 
process is represented as fuzzy rules or relations. 
This knowledge base is used by an inference 
mechanism, in conjunction with some knowledge of 
the states of the process (say, of measured response 
variables) in order to determine control-actions. The 
controllers based on fuzzy logic (FLC) can be 
considered as non-linear PID controller where their 
parameters are determined on-line based on the error 
and its derivative [5, 6]. However, this standard FL 
controller can not reacts to change in operating 
conditions. The FL controller needs more 
information to compensate nonlinearities when the 
operation conditions change. When the number of 
the fuzzy logic inputs is increased, the dimension of 
the rule base increases too. Thus, the maintenance of 
the rule base is more time-consuming. An other 
disadvantage of the FL controllers is the lack of 
systematic, effective and useful design methods, 
which can use a priori knowledge of the plant 
dynamics. 

To overcome the disadvantages of PID 
controllers and FLC, we propose in this paper a 
combination between them together. PID parameters 
controller can be tuned on-line by an adaptive 
mechanism based on a fuzzy logic for induction 
machine speed control. 

However, the major drawback of fuzzy control is 
the lack of design technique [10, 11]. Most of the 
fuzzy rules are human knowledge oriented and 
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hence rules will deviate from person to person in 
spite of the same performance of the system. The 
selection of suitable fuzzy rules, membership 
functions and their definitions along the universe of 
discourse always involve a painstaking trial-and-
error process [7]. GA most known and is most 
largely employed in the technique of global research 
with a capacity to explore and exploit a given 
operation space using the measurement of the 
available performance [12]. Recently of many 
applications combining the fuzzy concepts and GA 
appeared, particularly, the use of GA for the fuzzy 
logic systems control design. Thus approaches are 
called genetic-fuzzy system [13, 14].  In this way, 
we propose a technique to optimize the parameters 
of fuzzy adapter of PI controller; the controller 
resulting from this combination is known on the 
name:  adaptive FLC-PI-GA in order to apply it to 
the speed control of the induction machine. 

In this paper, the design of an optimal fuzzy gain 
scheduling of PI controller combines the merits of 
the sliding mode control and the fuzzy inference 
mechanism is proposed. A fuzzy gain scheduling of 
conventional PI controller is investigated, in which 
the fuzzy logic system is used on-line to generate the 
PI controller parameters. The indirect field-oriented 
control of induction motor is presented in section 2. 
Section 3 shows the development of the fuzzy tuning 
of PI controller based on the error and its first time 
derivative. Then, an optimal fuzzy gain scheduling 
of PI controller is being designed in which an 
optimization technique using genetic algorithm is 
developed to optimize the fuzzy logic controller. 
Finally, the combined proposed controller was 
applied for induction motor speed control through a 
numerical simulation. Section 7 concludes this 
paper. 
 
2. INDIRECT FIELD-ORIENTED CONTROL 

OF INDUCTION MOTOR 
 

The dynamic model of three-phase, Y-connected 
induction motor can be expressed in the d-q 
synchronously rotating frame as [1, 3, 4]: 
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Where σ  is the coefficient of dispersion and is 
given by (2): 

rs

m

LL
L2

1−=σ  (2) 

sL , rL , mL  stator, rotor and mutual 
inductances; 

sR , rR   stator and rotor resistances; 

eω , rω   electrical and rotor angular 
frequency; 

slω   slip frequency ( )re ωω − ; 

rτ   rotor time constant  ( )rr RL ; 
p   pole pairs 

The main objective of the vector control of 
induction motors is, as in DC machines, to 
independently control the torque and the flux; this is 
done by using a d-q rotating reference frame 
synchronously with the rotor flux space vector [2, 
3]. In ideally field-oriented control, the rotor flux 
linkage axis is forced to align with the d-axes, and it 
follows that [3, 4, 15]: 
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Applying the result of (3) and (4), namely field-
oriented control, the torque equation become 
analogous to the DC machine and can be described 
as follows: 
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And the slip frequency can be given as follow: 
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Consequently, the dynamic equations (1) yield: 
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The decoupling control method with 
compensation is to choose inverter output voltages 
such that [10]: 
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According to the above analysis, the indirect 

field-oriented control (IFOC) [3, 16] of induction 
motor with current-regulated PWM drive system can 
reasonably presented by the block diagram shown in 
the Fig. 1. 



Acta Electrotechnica et Informatica  No. 1, Vol. 7, 2007   3 
 
 

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic 
 
 

 
IMPWM

Invert. 

PARK-1

  Cf 

Lf 

PARK

IFOC: Indirect Field Oriented Control 

-

1
P iK K

s
+

1
P iK K

s
+

1

mL

e sLω σ

- 

e sLω σ

Slip 
Calc. 

-+

+

+

+

+ +

*
sqi

sqi sdi

*
rdφ

*
slω rω

*
eω

*
sdi *

sdV

*
sqV

m
e

r

L
L

ω
+

rdφ

 
 

Fig. 1  Block diagram of IFOC for an induction 
motor.  

 
3. THE SPEED CONTROL OF THE IM BY AN 

ADAPTIVE CONTROLLER FLC-PI 
 
To overcome the disadvantages of PID 

controllers and FLC, we propose in this paper a 
combination between the two types of controllers. 
PID parameters controller can be adjusted by an 
adaptive mechanism based on a fuzzy inference 
(adaptive FLC-PI). In what follows we show the 
method of combination between these two types of 
controllers. 

 
3.1. Fuzzy gain scheduling of PI controller 

 
Gain scheduling means a technique where PI 

controller parameters ( pk  and ik gains) are tuned 
during control of the system in a predefined way [5, 
6, 7]. It enlarges the operation area of linear 
controller (PI) to perform well also with a nonlinear 
system [5].  The diagram of this technique is 
illustrated in fig. 2.  The fuzzy inference mechanism 
adjusts the PI parameters and generates new 
parameters during process control, so that the FLC 
adapts the PI parameters to operating conditions 
based on the error and its first time difference. 
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Fig. 2  PI control system with fuzzy gain adapter. 

 
3.2. Description of the fuzzy scheduler 

 
The parameters of the PI controller used in the direct 
chain pk  and ik  are normalized into the range 
between zero and one by using the following linear 
transformations [5]: 
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The inputs of the fuzzy adapter are:  The error e  and 
the derivative of error eΔ , the outputs are : the 
normalized value of the proportional action ( '

pk ) and 

the normalized value of the integral action ( '
ik ).  

The problem of selecting the suitable fuzzy 
controller rules remain relying on expert knowledge 
and try and error tuning methods. The parameters 

'
pk  and '

ik  are determined by a set of fuzzy rules of 
the form: 
If e is Ai, and eΔ  is Bi, then '

pk  is Ci, and '
ik  is Di.

 (12) 
Where Ai, Bi, Ci and Di are fuzzy sets on 

corresponding supporting sets. Because the data 
manipulated in the fuzzy inference mechanism is 
based on the fuzzy set theory, the associated fuzzy 
sets involved in the fuzzy control rules are defined 
as follows: 
NB : negative big PM : Positive medium 
NM : negative medium PB : Positive big 
NS : Negative small B : Big 
ZE : Zero S : Small 
PS : Positive small  

 
 

 
 

Fig. 3  Membership functions e and eΔ . 
 
 

 

 
Fig. 4  Membership functions '

pk  and '
ik . 

 
The fuzzy rules in (12) may be extracted from 

operator’s expertise or based on the step response of 
the process [5]. The tuning rule for '

pk  and '
ik  are 

given in tables I and II respectively. 
By using the membership functions shown in 

Fig. 4, we have the following conditions 
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The fuzzy outputs '
pk  and '

ik can be calculated 
by the centre of area defuzzification as: 
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Where [ ]21 cc …=υ  is the vector containing the 

output fuzzy centers of the membership functions of 
'
Iϕ and '

Pϕ ,  [ ] ∑
=

=
2

1
21

i
iwwwW "  is the firing 

strength vector and iμ  represents the membership 

value of the output '
Ik  or '

Pk  to output fuzzy set i. 

Once the values of '
pk  and '

ik  are obtained, the 
new parameters of PI controller is calculated by the 
following equations: 

 
( ) min

'
minmax . ppppp kkkkk +−=  (15) 

( ) min
'

minmax . iiiii kkkkk +−=  (16) 
 
Table I: fuzzy rules base for computing '

pk . 
 

        e   
eΔ  NB NM NS ZE PS PM PB

NB B B B B B B B 
NM S B B B B B S 
NS S S B B B S S 
ZE S S S B S S S 
PS S S B B B S S 
PM S B B B B B S 
PB B B B B B B B 

 
Table  II: fuzzy rules base for computing  '

ik . 
 

        e   
eΔ  NB NM NS ZE PS PM PB

NB B B B B B B B 
NM B B S S S B B 
NS B B B S B B B 
ZE B B B S B B B 
PS B B B S B B B 
PM B B S S S B B 
PB B B B B B B B 

 
Fig 5 shows the block diagram of the indirect 

field oriented control by an adaptive controller FLC-
PI. 
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Fig. 5  Block diagram of IM control using fuzzy 

gain scheduling of PI controller 

 
4. SPEED CONTROL OF IM WITH AN 

OPTIMAL FUZZY GAIN SCHEDULER OF 
PI CONTROLLER 
 

4.1. Genetic Algorithms 
 
GA’s are parallel and global search techniques 

which take the concepts from evolution theory and 
natural genetics to evolve solutions to problems [12, 
14, 1]. The basic idea is to maintain a population of 
chromosomes (representing candidate solutions to 
the concrete problem being solved) that evolves over 
time through a process of competition and controlled 
variation. GA’s is theoretically and empirically 
proven to provide robust search in complex spaces, 
giving a valid approach to problem requiring 
efficient and effective searching [12, 14]. 

A GA starts with a population of randomly 
generated chromosomes, and advances towards 
better chromosomes by applying genetic operators 
modelled on the genetic processes occurring in 
nature. The population undergoes evolution in a 
form of natural selection. During successive 
iterations, called generations, chromosomes in the 
population are rated for their adaptation as solutions, 
and on the basis of these evaluations, a new 
population of chromosomes is formed using a 
selection mechanism and specific genetic operators 
such as crossover and mutation. An evaluation or 
fitness function must be devised for each problem to 
be solved. Given a particular chromosome, a 
possible solution, the fitness function returns a 
single numerical value, which is supposed to be 
proportional to the utility or adaptation of the 
solution represented by that chromosome. In these 
algorithms we maintain a population of solutions for 
a given problem; this population undergoes 
evolution in a form of natural selection. In each 
generation, relatively good solutions reproduce to 
give offspring that replace the relatively bad 
solutions which die. An evaluation or fitness 
function plays the role of the environment to 
distinguish between good and bad solutions. The 
process of going from the current population to the 
next population constitutes in the execution of GA. 
Although there are many possible variants of the 
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basic GA, the fundamental underlying mechanism 
operates on a population 0000of chromosomes and 
consists of three operations [12]: 

• Evaluation of individual fitness; 
• Formation of gene pool (intermediate population); 
• Recombination and mutation. 

Fig. 6 illustrates the principal structure of the 
genetic algorithms based on this operation mode [3, 
17, 19]. 

 
 

Recombine parents into offspring 

Initialise P(t=0) 

Evaluate P(t) 

Select parents from P(t) 

Mutate offspring 

Include offspring in P(t+1) 

t=t+1 

Termination criteria fulfilled  

Finish 

No 

Yes 

 
 
Fig. 6  Principal structure of genetic algorithm. 

 
There are a number of ways of making the 

selection. We might view the population as mapping 
onto a roulette wheel, where each chromosome is 
represented by a space that proportionally 
corresponds to its fitness. By repeatedly spinning the 
roulette wheel, chromosomes are chosen using 
stochastic sampling with replacement to fill the 
intermediate population. The selection procedure 
proposed in [12], and called stochastic universal 
sampling is one of the most efficient, where the 
number of offspring of any structure is bound by the 
floor and ceiling of the expected number of 
offspring. 

After selection has been carried out the 
construction of the intermediate population is 
complete, then the genetic operators, crossover and 
mutation, can occur. A crossover operator combines 
the features of two parent structures to form two 
similar offspring. It is applied with a probability of 
performance, the crossover probability (Pc). A 
mutation operator arbitrary alters one or more 
components of a selected structure so as to increase 
the structural variability of the population. Each 
position of each solution vector in the population 
undergoes a random change according to a 
probability defined by a mutation rate, the mutation 
probability (Pm). 

4.2.  Design of fuzzy-genetic system 
 
Different approaches have been proposed to 

automate the design of fuzzy systems [13, 14, 19, 
20]. Many of these approaches take the genetic 
algorithm as a base of the learning process. A GA 
was used to optimize the fuzzy logic input 
membership functions, the fuzzy rules, the output 
membership functions scaling factors and universe 
of discourse [13, 19, 20, 21]. 

 
4.2.1. Membership parameters optimization 

 
GA is applied to modify the membership 

functions. When modifying the membership 
functions, these functions are parameterized with 
one to four coefficients (Fig. 7), and each of these 
coefficients will constitute a gene of the 
chromosome for the GA. 

 
  

a b c d a a b c x0

1

b  
 

Fig. 7  Some parameterized membership functions 

 
4.2.2. Fuzzy rule base optimization 

 
Different methods are defined to apply GA to the 

rule base optimization, depending on its 
representation [13, 17]. For example, GA are used to 
modify the decision table of an FLC, which is 
applied to control a system with two input (trial-and-
error) and one input (command action) variables. A 
chromosome is formed from the decision table by 
going row-wise and coding each output fuzzy set as 
an integer in 0, 1,…, n, where n is the number of 
membership functions defined for the output 
variable of the FLC. Value 0 indicates that there is 
no output, and value k indicates that the output fuzzy 
set has the k-th membership. 

 
4.2.3. Optimization algorithm using GA of the 

fuzzy adapter 
 
GA can be applied to the automatic generation of 

knowledge base of an optimal fuzzy logic controller 
(FLC). The key is to employ an evolutionary 
learning process to automate design of the 
knowledge base, which can be considered as an 
optimization or search problem [17, 19, 20, 21]. The 
application of the GA in the optimization process of 
the FL controllers can be formulated as follows: 

1. Start with an initial population of solutions that 
constitutes the first generation (P(0)). 

2. evaluate P(0): 
a) Take each chromosome (KB) from the 

population and introduce it into the FLC, 
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b) Apply the FLC to the controlled system for an 
adequate evaluation period, 

c) Evaluate the behavior of the controlled system 
by producing a performance index to the KB. 

3. While the termination condition is not met, do 
a) create a new generation (P(t+1)) by applying 

the evolution operators (selection, crossover 
and mutation) to the individuals in P(t), 

b) Evaluate P(t+1)  
c) t = t+1. 

4. End. 
 

The mechanism of this optimization procedure 
can be represented in fig. 8 [13, 17, 19, 22]. 

We propose a genetic learning method for the 
Data Base (DB) of Mamdani fuzzy rule base system 
that allows us to define: 

• The numbers of labels for each linguistic 
variable. 

• The universe of discourse. 
• The form of each fuzzy membership function. 

The fuzzy adapter consists of two inputs (error 
and its derivative) and two outputs ( '

pk ) and ( '
ik ), 

where each input has seven membership functions.  
These subsets are labelled by linguistic terms such 
as:  Zero (Z), Negative (N)... etc. We use GA to 
search the appropriate parameters values and to 
modify the decisions table of the FLC [20, 21, 22], 
where the chromosome is formed from the decision 
table and to code each membership function by a 
integer number from 0 to 2, number 2 indicates the 
number of membership function defined for the two 
outputs [12].  So, we can present the equivalent code 
by:  Small (S): 1, Big (B):  2 and No output:  0. 

In GA, we only need to select some suitable 
parameters, such as generations, population size, 
crossover rate, mutation rate, and coding length of 
chromosome [12, 14], then the searching algorithm 
will search out a parameter set to satisfy the 
designer's specification or the system requirement. 
In this paper, GA will be included in the design of 
fuzzy gains tuner of the PI controller. 

 
 Evolution  
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Fig. 8  Evolutionary learning of an FLC 

The parameters for the GA simulation are set as 
follows: 
(1) Initial population size: 30; 
(2) Maximum number of generation: 100; 
(3) Crossover: Uniform crossover with probability 
0.8; 
(4) Mutation probability: 0.01. 

In this paper, the performance is measured using 
the following criteria. 
(5) Minimum integral of squared which is given as 
follows: 
 

( )∫∫ −==
t

rr

t

dtdteJ
0
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Fig. 10 shows the tuning scheme of PI controller 

adapted by a fuzzy system where their parameters 
are optimized by the genetic algorithm. 
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Fig. 9  The optimization technique of the fuzzy gain 
scheduling of PI controller. 

 
4.2.4. Results of optimization procedure 

 
The results obtained for the parameters 

optimization of the membership functions are 
represented in fig. 10 to fig. 13. 
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The resulting rule bases from the optimization 
procedure are shown in table III and IV.  In the 
tables for example, the first rule for the output '

Pk  

and '
Ik  is: 

 
If e  is A11 And eΔ  is A21 So '

Pk  is  B12 and '
Ik  is B21 

Where B12 is the second fuzzy set of the first 
consequent ( '

pk ) and B21 is the first fuzzy set of the 

second consequent ( '
ik ). We can re-write this rule 

as: 
 

If e  is NB And eΔ  is NB So '
Pk  is  B and '

Ik  is S. 
 
Table III:  rule bases of the output '

pk . 
  
   eΔ   
e    A21 A22 A23 A24 A25 A26 A27 

A11 2 1 2 2 2 2 2 

A12 2 1 1 2 2 2 2 

A13 1 2 1 2 2 1 2 

A14 2 2 2 2 1 2 1 

A15 1 1 1 2 1 2 2 

A16 2 2 1 2 1 2 2 

A17 2 2 1 2 1 2 2 

 
Table IV:  rule bases of the output '

ik . 
 
   eΔ    
e    A21 A22 A23 A24 A25 A26 A27 

A11 1 1 2 1 1 1 1 

A12 2 2 2 1 1 2 2 

A13 2 1 2 2 1 1 2 

A14 2 2 1 2 1 2 2 

A15 2 2 1 1 2 2 1 

A16 2 2 1 2 2 2 1 

A17 2 2 1 1 1 2 2 
 
 
5. SIMULATION RESULTS 

 
To prove the rightness and effectiveness of 

proposed control scheme, we apply the designed 
controller to the control of the induction motor. The 
configuration of the overall control system is shown 
in Fig. 9. It mainly consists of an induction motor, a 
ramp comparison current-controlled pulse width 
modulated (PWM) inverter, a slip angular speed 
estimator, an inverse park, an outer speed feedback 
control loop and a fuzzy gain scheduling of PI 
controller or fuzzy gain scheduling of PI controller 
optimized by GA for the speed control. 

Fig. 14 shows the parameters variations of PI 
controller with fuzzy gains tuning during the control 
operation. Fig. 15 shows the disturbance rejection of 
adaptive FLC-PI controller when the machine is 
operated at 200 [rad/sec] under no load and a 
nominal load disturbance torque (10 N.m) is 
suddenly applied at 0,5sec, followed by a consign 
inversion (-200rad/sec) at 1sec. The adaptive FLC-
PI controller rejects the load disturbance rapidly 
with a negligible steady state error.  

In the next simulation results, the fuzzy gains 
scheduling of PI controller optimized by GA is 
applied to speed tracking of induction motor. The 
simulated results of combined proposed controllers 
system due to step change in the reference commands 
are depicted in Fig. 16. The proposed controller is 
now compared under the same operating conditions 
of the drive system. From the simulated results, 
perfect tracking responses and robust characteristics 
also can be obtained for the optimal fuzzy gains 
scheduling of PI controller. Figure 16 confirm that the 
controller rejects the load disturbance very rapidly 
with no overshoot, with a minimum rise time and 
with negligible steady state error more than the first 
proposed controller. Fig. 17 shows the parameters 
variations of PI controller with fuzzy gains tuning 
optimized by GA during the control operation.  

A comparison between the proposed controllers 
(fuzzy gains scheduling of PI controller and the 
fuzzy gains scheduling of PI controller optimized by 
genetic algorithms) is shown in fig. 21.  In Fig. 21, it 
can be observed that the speed response of the 
optimal fuzzy scheduler of PI controller present best 
tracking responses and very robust characteristics and 
better that other conventional controller. 

Fig. 18 shows the simulation results of the 
system with the adaptive FLC-PI optimized by GA 
when the machine is operated in delicate conditions 
such as disturbance application (Tl=5xTlN) in the 
instant t=0,5sec and application of very low speed 
reference (wr=20rad/sec) at t=1sec. 

A test of robustness was also carried out by an 
increase in 300% of the rotor resistance of the 
machine (Rr) (Fig. 19) and of 70% of its moment of 
inertia (J) (fig. 20).  The figures show that the 
proposed controller gave satisfactory performances 
thus judges that the controller is robust. 
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Fig. 14  Parameters variation of the adaptive PI 
controller using fuzzy inference mechanism. 
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Fig. 15  Simulated results of adaptive PI 
controller using fuzzy system of IM control. 
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Fig. 16  Simulated results of adaptive PI 
controller using fuzzy system optimized by GA  of 

IM control. 
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Fig. 17  Parameters variation during simulation 
test of the adaptive PI controller by optimal fuzzy 

inference mechanism. 
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Fig. 18  IM speed control with FLC-PI optimized 

by GA in delicate conditions. 
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Fig. 19  The IM rotor speed control with adaptive 
FLC-PI optimized by GA for two different Rr. 
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Fig. 20  The IM rotor speed control with adaptive 
FLC-PI optimized by GA for two different J. 
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Fig. 21  Simulated results comparison of adaptive PI 

using fuzzy inference and adaptive PI using fuzzy 
inference optimized by GA of IM. 
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6. CONCLUSION 
 
In this work, we proposed a method of 

combination between the fuzzy controller and 
conventional PI controller in order to overcome the 
disadvantages of PI controllers and FLC, this 
combination gave us an adaptive PI controller which 
presented satisfactory performances (no overshoot, 
minimal rise time, best disturbance rejection). The 
major drawback of the fuzzy controller is the 
insufficient analytical design technique (choice of 
the rules, the membership functions and the scaling 
factors).  That we chose with the use of the genetic 
algorithm for the optimization of this controller in 
order to control IM speed. In the system, GA is used 
to design an adaptive PI controller using fuzzy 
controller with optimal parameters. The optimal 
fuzzy gains scheduling of PI controller is used to 
achieve robust performance against parameter 
variations and external disturbances. The control 
dynamics of the proposed hierarchical structure has 
been investigated by numerical simulation. 
Simulation results have shown that the proposed 
optimal controller is robust with regard to parameter 
variations and external load disturbance (no 
overshoot, minimal rise time, best disturbance 
rejection). Finally, the proposed controller provides 
drive robustness improvement and assures global 
stability. 
 
 
APPENDIX 

 
Table V: Induction motor parameters 

Pn [Kw] 1.5 Ian [A] 6.31 Ls [H] 0.274 
Vn [V]  220 Rs [Ω] 4.85 ƒn [Hz]  50 
η  0.78 Rr [Ω] 3.805 Jn [kg/m2]  0.031  

Cosϕn 0.8 Lr [H] 0.274 ƒc [Nm.s/rd] 0.0014 

ωn[min-1] 1428  Lm [H] 0.258 p 2 
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