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SUMMARY 
The problem of electric field grading in cable components, having both theoretical and technological implications, can 

be framed in more general topic of field control in HV equipment. A solution may be obtained by two possible approaches: 
using geometric field control [11, 13, 14, 15, 17, 18], in which the field distribution depends on the arrangement of main and 
auxiliary electrodes or using resistive-capacitive (RC) field control [2, 4, 6, 10, 12 ], where the field distribution relies 
mainly on the electrical characteristics of stress grading materials. 

The above considerations are applicable to a wide class of MV and HV electrical devices such as insulators, bushings, 
spacers, voltage deviders, cable accessories (joints and terminations), etc. In the following, paper attention will be focused  
on the cable terminations and joints. 

At the places of cable connections and endings exterior cover is removed, and the radial character of electric field is 
disturbed. Because of high voltage, the inhomogeneous electric field exists on those parts of the cable, having the highest 
intensity at the ends of the covers, or screen. Cable joints and terminations represent the weakest part of a HV cable power 
line because of the electric field enhancement at the edge of the truncated conductors and dielectrics. 

The results for electric field and potential distribution at the coaxial cable terminations and joints, having exponential or 
ellipsoidal form, obtained by the Equivalent electrodes method (EEM), are presented in this paper. The EEM and Finite 
elements method (FEM) are compared. Equivalent electrodes (EE) are appointed on the end of coaxial cable, where the edge 
effect exists. At the great distance from terminations and joints, inside the cable, it may be considered that the field is appro-
ximately homogeneous and the charge distribution is continuous. At the cable splice, it is possible to solve the problem 
(electric field and electric potential distribution) as superposition of two components: the first one originates from 
continuous distribution of the electrical charge, and the second one from equivalent electrodes. 

 
Keywords: Equivalent electrodes method, Toroidal electrode, Edge effect, Electric field distribution, Cable terminations 
and joints, Equipotential surfaces. 
 
 
1. INDRODUCTION 
 

Security of the electric power systems strongly 
depends on cable networks reliability. From the 
other side, the reliability of the cable structures 
depends on the way of jointing and terminating the 
cables, which includes the problem of cable joints 
[2, 5, 13, 14, 17] and terminations [1, 3, 4, 9, 11, 12, 
13, 15, 18]. 

There is a large number of parameters that make 
influence on the way of the producing cable termina-
tions, and naturally, the biggest attention is paid to 
the electrical field forming. It is possible to 
efficiently reduce electric field intensity [9, 11, 14, 
15, 17, 18], especially the axial electric field 
component at the insulator surface. When the high 
voltage exists at these places, the strong and inho-
mogeneous electric field is formed. 

Numerical evaluation of the electric field in a 
cable termination is carried out by adopting a model 
based on the electro-quasi-static approximation of 
Maxwell equations [1, 10]. 

The small size of cable terminations and joints 
with respect to the characteristic wave length of 
electromagnetic field and the low contribution of the 
energy associated to the magnetic field, compared to 
that stored in the electric field, allow the adoption of 
this approximation of Maxwell equations. 

There are many approaches for solving the 
problem of minimizing electrical field intensity at 
the places of power cable splicing: 

1. geometrical (by using deflectors) ; 
2. linear resistive; 
3. non-linear resistive field grading coatings; 
4. refractive field grading coatings; 
5. capacitive method; and 
6. complex method . 

The most frequently used method for minimizing 
electric field density in the vicinity of the sharp end 
that is part of the insulator screen, is based on the 
application of the funnel-like, appropriately modeled 
screen extension. This way of electric field shaping 
is known as geometrical modeling. 

 
2. CABLE TERMINATION 
 

There is a big number of cable terminations 
developed in last few years. Cable failures still 
happen, causing great economic losses, mainly 
because of a cable termination breakdown. For that 
reason any improvement in the cable termination 
construction is of great interest. 
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Fig. 1  Non-modeled Cable termination. 
 

Far away from the cable termination (Fig. 1) 
charge distribution is continuous on its conductors. 

There is distributed positive charge on the 
interior and negative charge on the exterior 
conductor. Charge density per unit surface is 
constant in the distant regions from cable breaks, 
which are at the interior conductor (having radius 
a ), and at the exterior conductor (having radius b ), 
respectively 

η
πa
q

a
=

'
2

   and   η
πb
q

b
= −

'
2

.  (1)
 

If it is presumed that such charge distribution is 
also in the surroundings of the cable break, the 
approximate expression for potential is 
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where r z, andθ  are cylindrical coordinates, 

A r a ar2 2 2 2= + − cos 'θ ;  (3) 

B r b br2 2 2 2= + − cos 'θ ; (4) 
and 
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On the basis of the expression for potential, and 
for L L L1 2= = , approximate expressions for 
electric field’s radial and axial components are 
determined. 

If 

E
U
a0 = , (6) 

K m
m

π α

α

π

2 1 2
0

2

,
d

sin
⎛
⎝⎜

⎞
⎠⎟ = −∫  (7) 

is the complete elliptic integral of the first kind, m  
is its squared modulus and U  is the voltage that the 
coaxial cable is supplied by, then for electric field’s 
radial component the followung is obtained: 
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while the axial component of the electric field is 
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2.1.  Application of the Equivalent electrodes method  
 

The above mentioned charge distributions do not 
coincide with the real ones, because the boundary 
conditions are not satisfied, so consequently the 
conductors are not of constant potential. Due to this, 
additional expressions are superposed to the 
previous ones. 

If equivalent electrodes [7, 8] are used as 
additional elements, excellent results are obtained. 
Toroidal electrodes are employed as EE, having 

cross section radius a L Ne = 4 , and with medium 
lines located at the places 

z n
l

n = −( )2 1
2

,  (12) 

for r a= , e.g., r b= , where is n N= 1 2,, ," .  
Table 1 shows obtained convergence of the 

results for electric field, normalized to 0E , when the 
number of equivalent electrodes and the length of 
cable termination modeled by equivalent electrodes, 
are used as parameters. 

 

 
Tab. 1  Electric field strength at the conductors, normalized to 0E , at the distance z a= 15.  from the cable end. 

 
Part of the interior conductor (Fig. 2), having 

length L3 , is also modeled with toroidal shape.  
One method for strength reduction of the electric 

field existing in cable ends, in the surroundings of 
cable breaks is to model appropriately the end of 
line’s exterior conductor. In this way more 
continuous distribution of electrical potential is 
obtained. 

In case when the exterior conductor has the same 
shape as broken coaxial cable’s equipotential line, 
the best results are obtained. As these equipotentials 
are not mathematically explicitly defined, it is 
possible to use greater number of functions to 
describe the shape of the exterior conductor. Each of 
these functions has certain advantages, but also has 
some disadvantages.  

 Using the EEM it is possible to determine 
potential and electric field in arbitrary chosen point 
of cable end region. The calculation is done for 
cable terminations having funnel shape, which axial 
sections modeled by either polynomial or 
exponential function (Fig. 2) and when the exterior 
conductor end is modeled by ellipse (Fig. 6). 

EE, which replace various segments of interior 
conductor ends, have toroidal shapes. Their cross 
sections radii are determined in the following way: 

• The first step is to divide the curve modeling on 
N4  segments and to connect these points; 

• Equivalent radius ( ae4 ) is determined as the 
forth of smallest distance among the end points; 

• Centers of the equivalent electrodes are placed 
on the medium line ( r r z zn n= =p p; ) among 
the points, but on the very surface on the 
exterior conductor. 

 If normalization of all lengths (interior and 
exterior conductor radius, radial and axial cylindrical 
coordinate and etc.) with respect to radius a  of inte-
rior conductor is done and if equivalent electrodes’ 
radii are  

a
l
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and their centers are: 
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l

n Nn3
3
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then or electric scalar potential is obtained: 

L L a1 2 3= =  L L a1 2 6= =  L L a1 2 9= =  

N N1 2= E r a( )=  E r b( )=  N N1 2= E r a( )=  E r b( )=  N N1 2=  E r a( )=  E r b( )=  

  1 0.80257 0.53438    2 0.80142 0.53235    3 0.80089 0.53041 

  3 0.76961 0.35885    6 0.76904 0.35872    9 0.76900 0.35859 

  5 0.81915 0.33648  10 0.81900 0.33619   15 0.81901 0.33611 

  7 0.83966 0.32521  14 0.83965 0.32492   21 0.83966 0.32487 

  9 0.85361 0.31909  18 0.85372 0.31879   27 0.85373 0.31875 

11 0.86337 0.31512  22 0.86354 0.31482   33 0.86355 0.31479 

13 0.87066 0.31234  26 0.87088 0.31204   39 0.87089 0.31201 

15 0.87633 0.31028  30 0.87660 0.30997   45 0.87661 0.30994 

21 0.88780 0.30636  42 0.88813 0.30605   63 0.88815 0.30603 

27 0.89484 0.30413  54 0.89522 0.30381   81 0.89523 0.30379 

33 0.89965 0.30268  66 0.90006 0.30236   99 0.90009 0.30231 

51 0.90801 0.30029 102 0.90846 0.29997 153 0.90848 0.29992 

69 0.91243 0.29890 138 0.91290 0.29878 207 0.91291 0.29876 

87 0.91260 0.29809 174 0.91268 0.29807 261 0.91268 0.29807 



4 Electric Field Regulation at the Cable Accessories Using One New Numerical Approach 
 
 

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic 
 

( ) ( ) ( )
( ) ( )

( )
( ) ( )

( )
( )

ϕ ϕ
π π

π

r z
U

r z
U

K m r z z a

r z z
Q

K m r b z z a

r b z z
Q

K m r z z a

r z z
Q

n

n
n

n

N n

n
N n

n

N

n

n
N N n

n

, , , , , , , , , , , ,

, , , , ,

( )

apr e e

e

= +

⎛
⎝⎜

⎞
⎠⎟

+ + −
+

⎛
⎝⎜

⎞
⎠⎟

+ + −
+

+
−

⎛
⎝⎜

⎞
⎠⎟

+ + +

=
+

=

+ +
=

∑ ∑2
1

1

2

2
1

1

1 1

2
1

2
1

2 2

2
2

2
1

3 3

2
3

2

1

1

2

1 2

( )
( ) ( )1

4

2 2
1

3

1 2 3

4 2
N n n n

n n

N N N n
n

N K m r r z z a

r r z z
Q∑ ∑+

⎛
⎝⎜

⎞
⎠⎟

+ + −
+ + +

=

π
, , , , ,p p e

p p

, (17) 

where 

( ) ( )
( ) ( ) ( )m r r z z r k r r z z

r r
r r z z r r z z r

, ' , ' , , ' , '
'

' ( ' ) , ' , 'tor
tor

= =
+ + − +

2
2 2 2

4
δ δ

 (18)

 
and 

( )δ x x
x x
x xn

n

n
,

,
=

=
≠

⎧
⎨
⎩

1
0

. (19) 

Relative charge is 

Q
q

aUn
n=

2 2π ε
, (20) 

where nq  denotes the total charge of the n -th 
equivalent electrode and ε  is electrical permittivity 
of the medium. 

In order to estimate the accuracy of the applied 
method, the end of a cut cable with 03 =L , 00 =z , 

ab 3=  and ar =  has been observed. 
The electric field on both the interior conductor 

surface ( ar = ) and on the inner side of the exterior 
conductor ( br = ) is calculated. 
 
2.2. Geometrically modeled cable termination by 

power or exponential functions 
 

Applied polynomial function has following 
expression: 

r
r b
z

z bk
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−
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0
, (21) 

and the exponential 
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It is considered polynomial function of the 
second degree ( k = 2 ), with the next parameters 
(Fig. 2): b a= 2 ; r a0 3= ; z a0 2= − ; L L a1 2 3= = ; 
L a3 6= . 

For practical applications, when cable termina-
tions are geometrically modeled, maximum value of 
the axial component of electric field is mostly consi-
dered. Due to these reasons distribution of electric 
field’s axial component is like plotted in Fig. 3. 

 

 
Fig. 3  Distribution of electric field axial component 
( E Ez 0 ) in the radial direction ( r a ), for different 
axial coordinates values, modeled by polynomial 

function. 
 
Axial cross-section of equipotential surfaces is 

presented in Fig. 4. 
Distribution of electric field's intensities in the 

surroundings of the cable termination modeled by 
exponential function, b a= 2 , r a0 3= , z a0 4= − , 
L L a1 2 3= = , L a3 6=  is presented in Fig. 5. 
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Fig. 2  The end of coaxial cables having 
geometrically shaped termination by polynomial or 

exponential function. 
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Fig. 5  Electric field intensity distribution ( E E0 ) in 
axial direction ( z a ) for different radial coordinate 

values for cable termination modeled by exponential 
function. 

 
2.3.  Geometrically modeled cable termination using 

elliptical function 
 

Figure 6 presents the shape of geometrically 
shaped cable termination with exterior conductor 
shaped as rotated ellipse. 

The angle is determined as 
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−
−
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The ellipse equation, according to which is 
modeled the end of the coaxial cable’s exterior 
conductor, is 
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It is observed the ellipse which has: 
b a= 2 , r a0 34= . , r akr = 3 , z akr = −3 , α π= 3 4 , 
L L a1 2 2= = , L a3 5= , N N1 2 20= = , N3 30=  
and N4 50= . 

Distribution of electric field’s axial component 
of the cable termination modeled by this ellipse is 
shown in Fig. 7. 
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Fig. 6  The end of coaxial cable having 
geometrically shaped cable termination modeled by 

ellipse. 
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Fig. 7  Distribution of electric field’s axial component 
( E Ez 0 ) in radial direction ( r a ), for z z< 0 , for 

geometrically modeled cable terminations by ellipse. 
 

 Dielectric breakdown is energetic phenomenon, 
so it is very important to know the density of 
equpotential curves. 

Axial section of equipotential surfaces is 
presented in Fig. 8. 
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Fig. 8  Equipotential lines of the cable termination 
with exterior conductor’s end modeled by ellipse. 

 
Table 2 shows obtained convergence of the 

results when the number of EE is parameter. 
Electric potential and electric field components 

are compared with values obtained by using Finite 
elements method, FEM. These differences for 
electric potential are expressed in per cents (table 2). 

 
 

N ϕ U  E Er 0  E Ez 0  Relative 
error (%) 

2 0.27248 -0.068 -0.841 9.17115 

5 0.30219 0.208 -1.068 0.73303 

10 0.30205 0.186 -1.053 0.68349 

15 0.30138 0.170 -1.040 0.46134 

20 0.30107 0.163 -1.035 0.35679 

30 0.30077 0.157 -1.031 0.25710 

40 0.30061 0.155 -1.029 0.20601 

60 0.30057 0.155 -1.029 0.15051 
 
Tab. 2  Results obtained by using EEM and 

compared with FEM (relative error) 
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Relative error is maximal when only two EE are 
applied, and minimal for infinite number of EE. 

It is possible to use analogies between plan-
parallel and rotationally symmetric electric systems 
for analytical determination of electric potential and 
field distributions at the cable terminations [16]. 
Conformal mapping and Schwartz-Cristoffel’s 
transform are applied for those calculations. For 
modeled cable terminations this method can not be 
used, but equivalent electrodes method is generally 
applicable. 

 
3. CABLE JOINTS  

 
If the distances between contact places of the 

interior conductors ( 0=z ) and area where the 
charge distribution at the coaxial cables conductors 
can be assumed as uniform are different, 21 LL ≠ , 
approximate expression for axial component of 
electrical field is 
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Toroidal electrodes are employed as equivalent 
electrodes (Fig. 9), having cross section radii 

111e 4NLa =  and 2d22e 4)( NzLa −= , and with 
medium lines located at the places 

( )
2

12 1lnzan −= ; ar = ; (26) 

( )
2

12 2
d

l
nzzbn −+= ; br = . (27) 

 
3.3 Geometrically modeled cable joint using 

ellipse and power function 
 
There are many ways for shaping ends of cable 

joints of exterior conductors. The best results are 
obtained when shape of exterior conductor "follows" 
one of the equipotential surfaces, although they 
cannot be obtained analytically, using known 
mathematical functions. 

In order to provide simplicity in producing of 
cable joints, geometrical shaping is realized by using 
some known mathematical functions. 

The best results and the maximally reduced 
electric fields are obtained when cable joints are 
modeled with both ellipse and power function 
(Fig.9). 

The parametric expressions of the power 
function used for ends modeling of the coaxial cable 
exterior conductors are: 
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Fig. 9  Geometrically modeled cable joint using ellipse together with power function. 

( ) ( )z t z t z z= − −d d 0 , ( ) ( )r t b t r bk= + −0 , (28) 
where k  is the degree, and t is parameter having 
value between 0 and 1. 

Radial and axial coordinates of ellipse’s center 
are determined by using condition of “flat contact” 
between ellipse and power function shaped part of 
deflector. In these points the first derivates of 
functions are the same. Respecting this condition, 
coordinates of center of ellipse are: 

( ) 2
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where 
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( )
0d

0
00 ,'

zz
br

kzrr
−
−

−=  (31) 

is the first derivate in “contact” points. 
This part of deflector is modeled by toroidal 

equivalent electrodes, placed in points with 
coordinates )( epe nn rr θ=  and )( epe nn zz θ= , where 

( )
2

12 pod
0e

α
−+α=θ nn ;

5

0
pod N

α−α
=α . (32) 

The cable joints, modeled in this way, with: 
ab 3= , 43π=α , aLL 921 == , az 8d = , ar 40 = , 
az 50 = , aa 2po = , ab =po , are observed.  

Polynomial degree is 2=k . Calculated center  
of ellipse is: 6.4c =r ; 6.6c =z . 

Distribution of the axial component of electrical 
field in radial direction (Fig. 10), is presented. 

Equipotential curves are shown in Fig. 11. 
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Fig. 10  Axial electrical field component distribution 
( E Ez 0 ) in axial direction ( z a ), for different radial 

coordinate values. 
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Fig. 11  Equipotential lines of geometrically 
modeled cable joint using ellipse together with 
power function, for parameters values: ab 3= , 

az 8d = , ar 40 = , az 50 = , aa 2po = , ab =po , 

43π=α , aLL 921 ==  and 2=k . 
 
Electric field, 0EE , on exterior conductor 

surface in points ( ) ( )enen zr θθ ;  for geometrically 
modeled cable joint, using ellipse together with 
power function, for parameters values: ab 3= , 

az 8d = , ar 40 = , az 50 = , aa 2po = , ab =po , 

43π=α , aLL 921 ==  and 2=k  is given with 
Tab. 3. 

This is the best way to reduce maximal electric 
field in cable joints region. Maximal strength of 
electric field is only 0.230722 0E . 

( )( )

θ α
α

e

pod

n

i n

= +

+ + −

0

2 1
2

 

n = 1 n = 3 n = 5 

i = 35 0.22414 0.10993 0.10621 
i = 30  0.10738 0.11211 0.11858 
i = 25  0.12215 0.12961 0.13712 
i = 20  0.14083 0.14814 0.15561 
i = 15  0.15956 0.11632 0.14620 
i = 10  0.16028 0.18489 0.20351 
i = 5 0.21044 0.21994 0.22459 
i = 0  0.22554 0.22552 0.23072 

 

Tab. 3  Electric field, 0EE , on exterior conductor 
surface in points: ( ) ( )enen zr θθ ;  for geometrically 

modeled cable joint using ellipse together with 
power function. 

 
4. CONCLUSION 
 

The described problem solving presents very 
important and complex task of high power 
technology for producing power cables and 
corresponding accessories. 

Finite elements method, Finite difference 
method, Charge simulation method, Boundary 
relaxation method or Boundary elements method can 
be applied for cable terminations and joints 
calculations, as well as equivalent electrodes 
method. The simplest calculation can be carried out 
using Equivalent electrodes method and it obtains 
very high accuracy of calculated values. Main 
advantages of the Equivalent electrode methods in 
comparison to all existing methods lie in very high 
precision, even in cases when relatively small 
number of equivalent electrodes is used. Numerical 
integration for calculation of some non-tabeled 
integrals having singular and semi-singular sub-
integral functions is not necessary, on the contrary to 
the Method of moments, what consequently causes 
faster calculation. In a limit case when the number 
of equivalent electrodes is very large (leads to 
infinity), results are absolutely accurate. 

Equivalent electrodes method is applied to non-
modeled, as well as on some geometrically modeled 
cable terminations and joints, when they are 
assumed as deflectors of funnel form, which border 
lines can have elliptical shape, the shape of 
polynomial or exponential function, as well as the 
form generated as the combination of the shapes 
mentioned above. The results for the distribution of 
the electric potential, radial and axial electric field 
components are presented in the paper. The 
equipotential surfaces in the vicinity of cable 
terminations and joints are also presented. 
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