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SUMMARY 
 The paper deals with a quite new conception of logic control. The conception model of the program CA (Control 
Automaton) will be set up on CA with a failure input, whereas a feedback CA can do without a failure input. CA is a static 
system, i.e. it is a minimal one, with respect to the number of states 
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1. INTRODUCTION 

 
The paper freely follows up with [1, 17], and 

shows, without superfluous formalism, that it is of 
necessity to fundamentally revise the current con-
ception of automatic logic control.  

Further on, it will be necessary to examine the 
content (meaning) of the following concepts: state, 
causality, dynamic logical system (DLS), and system 
of automatic logic control (SALC). 
 
2. STATE, CAUSALITY, DYNAMIC 

LOGICAL SYSTEM 
 
 A dynamic logical system in [2 -7] is defined as 
an ordered quartet at least 
 

〉〈= I s,  S,X,  A δ                                         (1) 
 
(a finite initial semiautomaton) where  SX, are input 
and state alphabets, respectively, and δ  is a transi-
tion relation, spec. function 
 

s x, s,:SXS ′××:δ ,                          (2) 

spec. 

sx s,:SXS ′→× 6:δ .                   (3) 
 

In particular, let us emphasize that the notation 
of the follower state s' with respect to the initial 
state is inaccurate as it is the case of prediction s' , 
namely a possible, spec. a certain one, which cannot 
be found in the system, because it is located in the 
inner or in then help output memory of the subject 
which identifies the given system. Let anticipation 
belong to metaphysics. 

A transition relation, spec. function δ  defines, 
together with the initial state Is the state s  of the 
system in a recurrent way 

o the initial state Is   is the state  

o if s  is a state, then also ( ),s x, s,proj ′3  
spec. ( )x s,δ s =′  are states 

o other states do not exist. 
 
 To define the state DLS as its entire input history 
[5] ξ , or ζ  (ξ  ≠ ζ ) is not acceptable, but 
( ) ( ) x ζx ζ,δ x ξx ξ,δ === ; is feasible. Neither 

Nerode’s definition of a state as a class of the finite 
decomposition of the entire input history [3, 10] can 
hold out since it assumes the existence of a class }{e  
with an empty word e  as the representative of it. A 
metaphysical acceptance of e  by the automaton is 
considered here as reality. 
 Let the transition relation, spec. function be gen-
eralized assuming that an acceptable input word is 
applied at the system input ifi2i1 ...xxx : 
 
( ) =ffi2i1I s,x ...x x,sδ i  

        ( ) ( )ff1f1f1ifi2i1I  s,x ,sδ s,x ...x x,sδ −−−= D ,    (4) 
spec. 

  ( ) ( )( )if1fi,i2i1Iifi2i1I x  ,x ...x x,sδ δ x ...x x,sδ −=    
 
Where ° is the composition operator of relations, 
spec. functions      

In considering causality in the nondeterministic 
DLS, let us  replace, in a purely metaphysical man-
ner, all possible follower  states of an arbitrary given 
state with only one certain state of follower in all the 
cases, and let us examine the causality of  the nonde-
terministic DLS as a causality of a deterministic “de-
terminized” DLS. 
       The dynamic system is said to be causal (freely 
cited according to [2, 3]) if for the validity of the fol-
lowing equality 
 

( ){ } ( ){ }j3i3 s ,x s,δ projs ,x s,δ proj ji ′=′                 (5)                       
 
spec. 

( ) ( )ji x s,δ x s,δ = ,



2 Dynamic System 
 

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic  

the necessary and sufficient condition is 
j)  (i ji ≠= x  x , since for ji x  x ≠    both 

( ) ( )ji x s,δ x s,δ = , and ( ) ( )ji x s,δ x s,δ ≠  

( ) ( )ji x s,δ x s,δ ≠ can be applied.   
 
    It is usually stated [9, 10] that the sufficient 
cause; x  always induces in DLS a possible or cer-
tain transition to the follower state, and if the system 
has been transferred to the follower state, it must 
have been due to the necessary cause x . Thus the 
necessary and sufficient cause represents all the 
causes of transition. 

       The authors, however, are of the opinion that the 
definition of the necessary and sufficient cause of 
state transition is not correct, neither is the term 
”sufficient” itself. Indeed, the sufficient cause x  al-
ways induces the state transition but only if the nec-
essary cause s; has been put into effect, the sufficient 
cause x on its own is not supposed to induce the state 
transition. In addition,. the necessary cause s does 
induce the transition in the system, whereas the suf-
ficient cause x only initiates, starts the transition      
( e.g. if a sailing boat is sailing, a wind certainly 
blows; if a wind blows, it is just sufficient to set up 
sail, if there is no wind, then the boat cannot sail 
even though the sails. 

Therefore, we will say that a dynamic system is 
causal if for the validity of equality 
      

( ){ } ( ){ }ljl3kik3 s ,x ,sδ projs ,x ,sδ proj ′=′          (6) 

 spec. 
 
( ) ( )jlik x ,sδ x ,sδ = , 

the necessary cause lk  s s =  and the sufficient cause 

lk  s s =  (k ≠ l), since for  ji  s s =   and ji x  x ≠   or 

lk  s s ≠  and  ji x  x =  , or ji  s s ≠  and  ji x  x ≠   both 

( ) ( )jjii xsxs     ,, δδ =  and     lk  s s =  

 ( ) ( )jjii  , xsx ,sδ δ≠    can hold. 
 
Consequently, the current conception of dynamic 
system causality considers the state as a static one  
and the motion along the state trajectory   
 
( )ffi2i1I s,x ...x x,sδ i    spec.  
( ) ffi2i1I sx ...x x,sδ i = , for x  x xx ==== ifi2i1 ...  

i.e. ( )f
f

I  s,x,sδ  spec. ( ) f
f

I  sx,sδ =  
 
 The ”intermediate state” of the transition ex-
plains as being unprompted, unrestrained spontane-
ous [3,6,7,8], even if it were the case of a determi-
nistic system. According to the authors, the state is 
to be conceived dynamically and the above men-
tioned state trajectory is the proper motion of the 
system itself. Nevertheless, according to [11], the ef-

fects in nature are derived from inner forces, or ac-
cording to [12], the attribute dynamic relates to 
force, as something being based on force, manifest-
ing (inner) force, motion, development; to be ki-
netic, of force (opposite to static). In addition, let us 
note that we consider state transitions )( s'x, s,δ , 
spec.    s'x s,   )( =δ  as instantaneous.       

 Therefore, if we make the less interesting or un-
observable “intermediate state”, in which a real ob-
ject occurs during the real state transition, identical 
with the starting state, the action of transition 
through the state s  is conspicuous. If the sensors are 
sensors of the level, the identification is evident, 
whereas the pulse sensors as pulse actors will be 
provided with supporting memories (actorscan also 
be identified with the follower state s' , but only in a 
formal way, so that it could be possible to construct 
a transition or Huffman’s table of the automaton). 

    If we declare that DLS is given by its canonic de-
composition (Fig..1), where ) Q, (E, Nδ  N =  is a dy-
namic substitute of the given dynamic system           

)( δ  S,X,  A =  and 〉×〈= λ E, ,Q,  X  I  is the static sys-
tem sought for so that in coding k states from A  
with the states from k - N :  

qs:QS 6→ - it holds [13]       

     
( )( ) ( ) ( )( ) ieiN qx ,q λ,qδs kxs,δ  k ′==′=  

 
and  ei q   q  q == , then it can be wrongly stated that 
the “feedback “ state eq  is the necessary cause of 
the transition from  q  to q'  and  from s   to s' , 
resp. But only the “inner:” state iq  is the necessary 
cause x  whereas the “feedback “state eq  together 
with x  is the sufficient cause x  of the transition 
from   q  to q'  and from s   to s' , resp. 
 
 Let us pay attention to identification of the dy-
namic logical system. In [9] a finite semi-automated 
model of a box with a square bottom is sought for, 
the length of its edge being l . It contains three 
square cubes, the lengths of their edges being 2l/  
(Fig.2.a)), The cubes can be shifted horizontally left-
wards )(l  or rightwards )(r , as well as vertically 
upwards  )(u  or downwards )(d . 
 

 
 

Fig. 1  Canonic decomposition.
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Fig. 2  a) Playing box, b) its transition graph. 

 
The model of the box is said to be an automaton 
with a transition diagram according to Fig. 2. b). But 
the subject identifying a play box (Fig. 2.a)) could 
never be constructed by its automaton model (Fig. 2. 
b)), unless it identified itself, unaware, with the con-
trol automaton (CA) of the box, and unless it ideally 
simulated the action of the control automaton. In this 
way, the subject in fact arrived not at the model of 
the box itself, but at the model of a dynamic system 
of automatic logical control, consisting of itself and 
of the play box, which is by no means dynamic.  The 
box is only potentially dynamic and so its possible 
action cannot be modeled by a finite automaton. 

Technological devices in themselves are not dy-
namic systems ( even if technologists, as a rule, pro-
vide their apparatus with CA, so that designers of 
control automation systems are, in fact , “workless”, 
whereas the dynamic systems are represented by 
structural models CA, (circuits) of dynamic systems 
designed by canonic decomposition, since the only 
dynamic elementary substitute is classical delay. 
 
3. IS ESSENTIAL AT ALL THE CONTROL 

OF A DYNAMIC SYSTEM?  
     
 Let SALC be given according to Fig. 3.a and let 

〉〈= δ  S,X,  A  be a DLS.  The model of the control 
static (Bellman) system [13] is CA 〉〈 λ X, ,S ][  
where λ   is considered to be the output function   

xs:XS:λ →→ ][][  where }{][ eS/S = and  
[ ] ess = . 
 

           
 

Fig. 3  System of automatic logical control. 

Let us assume that, without detriment of general-
ity, state trajectories are given on A : 
 

) , ,( if
f
iip sxsδ , spec. if

f
iip ) ,(  sxsδ = ,                (7)   

) , ,( jf
f
jjp sxsδ , spec. jf

f
jjp ) ,(  sxsδ = ,               (8)  

 
such that j)  (i ji ≠≠ x x , both sides sharing one of 
the states s  . Since A  is dynamic, it is sufficient to 
place an iterated stimulus ix  or jx to its input, and if 
A  is in the state ips or  jps , A  moves along the re-

spective state trajectory without CA being forced (!)  
to accept the states of the respective state trajectory. 
If A  arrives at the state s  and if the respective CA, 
say ix , which  ,ensures the motion of A  along the 
respective state trajectory (i)  according to the actual 
state s  of the automaton A  , then  CA will comply 
with a common requirement to transfer the actual 
motion of A   to the motion of trajectories (j) , i.e. , 
it will issue according to the state s  also ix , only if 
it is nondeterministic with the output relation  
 xs:XS:λ →×  so that )( ix s,λ  and )( jx s,λ   

Solution of the above mentioned trouble lies 
ready to hand:  it is sufficient to control DLS direc-
tively in the feedforward manner and  the control of 

ii x  u = , jj x  u =  is set by an operator selecting, in 
this way, the motion of DLS  along the respective 
state trajectory (i)  or (j) . 

Why has the quite evident nondeterminism of CA  
of the nondeterministic  DLS  escaped attention so 
far?  As a model of CA, be it a nondeterministic A  
or a deterministic A  with the so called failure input 
CA, so     

〉×〈= Z   ,X  Z,S  CA λ  [14, 15] with the failure input 
is considered. Z is the failure alphabet whose output 
function is  
λZ : x zs,:xZ S: Z →→× 2λ , where z  is the 
class of absolute decomposition of   Z to Z  
( Z z 2 ,   Z Z ⊆∈ ) – see Chap.4.    
That would be no problem so far as the effect of 
failures with DLS was recorded by controlling the 
decision vertices of the flow chart, but it can lead to 
errors, if for the “beginning (divergence) of se-
quence selection” [17] a function chart is used. 
 

Example 1.: Let us have 1σ
1z - a truck arrives (does 

not arrive) at the given  place (destination), 2
2
σz - the 

given temperature was(was not) reached, 3
3
σz - the 

liquid level 3
3
σz - was/was not of the given height 

( σσ zzσz ∨=  for 1} {0,  ∈σ ). Then the failure al-
phabet will be 
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∪
321

i

σ,σ,σ

σ
iiii

Z
⎭
⎬
⎫

⎩
⎨
⎧

==
==
∧× zZ  

3

1

3

1
,                        (9)            

where   { } { }0,1
σ
i i

i
∈= σzZ i  and the partition     

{ }3
1== iizZ     to Z     let be such that 

where 321321 )  ( zzz  ZzzzZ  21 ∨== , and 33 zZ = . 
 
 

     
 

 
 

Fig. 4  Decomposition of  set Z 
a) in the  Karnaugh map 

b) corresponding Boolean expressions 

 
  Let us show how the nondeterminism of CA. 
can be avoided. It is just sufficient when for the sys-
tem A , which is in the state s , CA is to accept the 
failure iz   or iz j)  i ,   ( ji ≠≠ zz , so that  

) ,( ii zsλx Z=   and  ) ,( jj zsλZx = .                                                         

 
4. LOGIC CONTROL 
 
      It is evident that control technological devices  
are not dynamic systems but are potentially dynamic 
(they cannot be considered as systems). The result of 
identifying such the mentioned apparatus, however, 
is a dynamic system – SALC – formed by the con-
trolled device and a subject, which, nolens volens, 
identified itself with the control automaton of the 
apparatus, á propos. a subject would hardly identify 
a conceptually controlled device  without mentally 
controlling it. 

Thus we deal with a model of the given SALC (Fig. 
3).  

〉×〈= δ , ],[ SZ  U  SALC                            (10) 
 
where SZU  ,  ,  are the respective failure and state  
alphabets given by the operator and δ   is the transi-
tion relation, spec. function. 

s u, s,:SUS ′××:δ ,                            (11) 
spec. 

szu:SZUS ′→→×× ]}[ , ,{][2:δ δ           (12) 

so that Zzus 
's

=⇒
′s

z) ,  ,(δ ∪∪ , where Z   is the 

total decomposition to Z )2  , ( Z  ZZz ⊆∈ and 

}{2][2 eZ Z /= , z/ez   ][ = . 
 
      Let the searched for model of the statistic system  
CA  be a finite automaton 
 

〉×〈= λ   ,X  ,U  CA [Z]                      (13) 
 
where  X  is the alphabet of  “machine” control and  
λ  is the assumed output function. 
 

xzus :XZUS:λ →〉〈→××  ][ , ,][2         (14) 
 
      A model, though not much interesting, of a po-
tentially dynamic technological device A  is the or-
dered triad 
                  

〉×〈= d , ],[ SZ X  A                           (15) 
 
where d  is ¨the  assumed input-output relation the  
 

} ],[ ,{ ][2 δzx:SZX ××:d ,                   (16) 
 
but not a finite automaton since A is not a dynamic , 
and therefore not a static system either. 
     From the morphology of SALC the validity of 
fundamental  equality of the automatic logical con-
trol can be derived 
 

d   Dλδ = , 
 
and the hypothesis concerning the form of the func-
tion  λ  and  relation d  is verified. 
In other words 

( ) ( )SXXλUSSUS ××=×× ⎯→⎯ D                 (17) 

spec. 
 

[ ]( ) [ ]( ) D  22 SδZUSSδZUS ⎯→⎯⎯→⎯ ××=××  
                                          
  [ ]( )SZX ×× 2D , 

which is in accordance with the assumed form of  λ  
and  d . 
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For easier design of CA. or its output function λ , it 
is advisable to include  the ”machine” control x  into 
the notation of the transition δ  relation, spec. func-
tion SALC  “machine” control of input x . 
 
Example 2.:   A truck )(v  moves between points 
Z  and K . An empty truck goes from point Z  to 
point K ; in the moment of arrival, the truck is 
loaded )(w  by opening a filling hopper )(n  – Fig. 5. 
When the loading of the truck is finished and the 
rated weight reached, the hopper is closed ant the 
truck returns to point Z . Then the alphabet of the 
“operator” control is stop} {start,  U = , the alphabet 
of the “machine” control is } , ,,{ standln r  X = , 
where l  r means that the truck will go to the 
right/left direction,  n denotes that the truck will take 
load and the state alphabet is 

} ,{  } ,{  } ,{ wvkkzz  S ××= , where zz  or kk  
means on/off switching of the truck drive in the re-
spective points Z and K, and v/w notifies that the 
truck is empty/loaded, respectively. Hence the ta-
bles: the transition table SALC of the truck (Tab. 1. 
a)), the output table of the truck CA  (Tab. 1. b)), and 
the input-output table of the truck (Tab. 1. c)).                                                                           
                                                                              
 

 
 

Fig. 5  Loading of the truck. 
 

 
Tab. 1  a) transition table of the automatic logic 

control system of the truck, 
b) response table of control automaton of  the truck, 

c) input-output table of the truck. 
 
a) 

s′ 
start stop  

σ 
ux 

s r n l stand 
1 v kz  v k z    v kz  
2 v k z  v k z    v k z  
3 v k z    wk z    wk z  
4  wk z     wk z   wk z  
5  wk z     wkz   wk z  
6  wkz     wkz   wkz  

 

b) 

 
c) 

x r n l stand 
σ 1, 2 3 4, 5, 6 1,2,4,5,6 

 
 

5. CONCLUSION 
 
 The paper does not deal with feedforward pro-
gram control, even if the conception model of the 
program CA  will  be set up on  CA with a failure in-
put, whereas  a feedback CA  can do without a fail-
ure input  
   Controlling a dynamic system in a feedback way is 
redundant since the feedforward control directive 
with respect to “commanding” control of u will do. 
Technological devices, however, are not dynamic, 
but only if technologists, not cooperating with de-
signers of control automation, do not provide them  
with CA; in that case the technological apparatus to-
gether with CA is a dynamic system – SALC, in 
which individual state trajectories are selected by the 
operator through the “command” control of u . 
     CA is a static system, i.e. it is a  minimal one, 
with respect to the number of states. Is it the Glush-
kov CA of Mealy type, not the Glushkov nonmini-
mal CA [5, 10, 13]. 
      The authors believe that the paper provides a 
convincing, integrated state conception of the dy-
namic system and the system of automatic logical 
control.   
The work was granted by the Ministry of Education, 
Youth and Sport of the Czech Republic - "University 
spec. research - 1311". 
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