
Acta Electrotechnica et Informatica No. 4, Vol. 7, 2007 1

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

TYPES FOR CALCULUS OF MOBILE CODE APPLICATIONS1

Martin TOMÁŠEK
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics,

Technical University of Košice, Letná 9, 042 00 Košice, phone: +421 55 6023178, e-mail: martin.tomasek@tuke.sk

SUMMARY
In this paper we present new type system for calculus of mobile ambients. Our approach is suitable for expressing

dynamic properties of mobile code applications, where the main goal is to avoid ambiguities and possible maliciousness of
some constructions in calculus of mobile ambients. We define behavioral scheme assigned to process types that statically
specifies and checks access rights for authorization of ambients and threads to communicate and move. We proved the
soundness theorem for the new type system and we demonstrated the system by showing how to model typical mobile code
paradigms that are used to design mobile code applications.

Keywords: ambient calculus, mobile code, type system

1 This paper was supported by the grants: VEGA 1/2174/05, VEGA 1/2176/05, VEGA 1/3135/06, VEGA
1/4073/07, and KEGA 3/5166/07.

1. INTRODUCTION

The calculus of mobile ambients [1] is based on
concurrency paradigm represented by the π-calculus
[2]. It introduces the notion of an ambient as a
bounded place where concurrent computation takes
place, which can contain nested subambients in a
hierarchical structure, and which can move in and
out of other ambients, i.e., up and down the
hierarchy what rearranges the structure of ambients.
The communication can only occur locally within
each ambient through a common anonymous
channel. Communication between different ambients
has to be performed by movement and by
dissolution of ambient boundaries.

The ambition of mobile ambients is in general to
express mobile computation and mobile computing.
Mobile ambients can express in natural way
dynamic properties (communication and mobility) of
mobile code systems, but there is still question of
deeper control and verification of mobility
properties (like access rights or mobility control).
Usual approaches apply type systems which add
more properties to the pure calculus. Our paper
presents the type system for ambient calculus that
abstracts various properties of mobility and
communication as a behavioral scheme of a process.

Mobile ambients model several computational
entities: mobile agents, mobile processes, messages,
packets or frames, physical or virtual locations,
administrative and security domains in a distributed
system and also mobile devices. This variety makes
that in principle there are no differences among
various kinds of software components when
expressing by mobile ambients. In mobile ambients
there are implicitly two main forms of entities,
which we will respectively call threads and
ambients. Threads are unnamed sequences of
primitive actions to be executed sequentially,
generally in concurrency with other threads. They
can perform communication and drive their

containers through the spatial hierarchy, but cannot
individually go from one ambient to another.
Ambients are named containers of concurrent
threads. They can enter and exit other ambients,
driven by their internal processes, but cannot
directly perform communication. It is very important
to ensure indivisibility and autonomous behavior of
ambients (this is also important e.g. for objects).

Communication between ambients is represented
by the movement of other ambient of usually shorter
life, which have their boundaries dissolved by an
open action to expose their internal threads
performing local communication operations. Such
capability of opening an ambient is potentially
dangerous [3, 4, 5]. It could be used inadvertently to
open and thus destroy the individuality of an object
or mobile agent. Remote communication is usually
emulated as a movement of such ambients
(communication packages) in the hierarchy
structure.

We explore a different approach, where we
intend to keep the purely local character of
communication so that no hidden costs are present in
the communication primitives, but without open
operation. This solves the problem of dissolving
boundaries of ambients, but disables interactions of
threads from separate ambients. We have to
introduce new operation move for moving threads
between ambients. The idea comes from mobile
code programming paradigms [6] where moving
threads can express strong mobility mechanism, by
which the procedure can (through move operation)
suspend its execution on one machine and resume it
exactly from the same point on another (remote)
machine. This solves the problem of threads
mobility and by moving threads between ambients
we can emulate communication between the
ambients.

Such adaptations of mobile ambients operations
we can express computational entities of mobile
programs in more natural way. Another purpose for

2 Types for Calculus of Mobile Code Applications

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

this approach is to prefer simplicity and
understandability of designed type system for
mobile ambients later on.

2. THE AMBIENT CALCULUS

We define abstract syntax and operational
semantics of our calculus. It is based on abstract
syntax and operational semantics of ambient
calculus including our new constructions.

2.1. Abstract Syntax

The abstract syntax of the terms of our calculus
in Tab. 1 is the same as that of mobile ambients
except for the absence of open and the presence of
the new operation move for moving threads between
ambients. We allow synchronous output and the
asynchronous version is its particular case.

::M = mobility operations

 | n name

 | in M move ambient into M

 | out M move ambient out of M

 | move M move thread into M

 .| M M ′ path

::P = processes

 | 0 inactive process

 || P P′ parallel composition

 !| P replication

 []| M P ambient

 (: [])| n Pν P B name restriction

 .| M P action of the operation

 .| M P〈 〉 synchronous output

 (:).| n Pμ synchronous input

Tab. 1 Abstract syntax

We introduce types already in the term syntax, in
the synchronous input and in the name restriction.
The defined terms are not exactly the terms of our
calculus, since the type constructions are not yet
taken into account, this is done by the typing rules in
the next section.

2.2. Operational Semantics

The operational semantics is given by a
reduction relation along with a structural congruence
the same way as those for mobile ambients.

Each name of the process term can figure either
as free (Tab. 2) or bound (Tab. 3).

() { }fn n n=
() ()fn in M fn M=
() ()fn out M fn M=
() ()fn move M fn M=
(.) () ()fn M M fn M fn M′ ′= ∪
()fn = ∅0
(|) () ()fn P P fn P fn P′ ′= ∪
(!) ()fn P fn P=
([]) () ()fn M P fn M fn P= ∪
((: [])) () { }fn n P fn P nν = −P B
(.) () ()fn M P fn M fn P= ∪
(.) () ()fn M P fn M fn P〈 〉 = ∪
((:).) () { }fn n P fn P nμ = −

Tab. 2 Free names

()bn n = ∅
() ()bn in M bn M=
() ()bn out M bn M=
() ()bn move M bn M=
(.) () ()bn M M bn M bn M′ ′= ∪
()bn = ∅0
(|) () ()bn P P bn P bn P′ ′= ∪
(!) ()bn P bn P=
([]) () ()bn M P bn M bn P= ∪
((: [])) () { }bn n P bn P nν = ∪P B
(.) () ()bn M P bn M bn P= ∪
(.) () ()bn M P bn M bn P〈 〉 = ∪
((:).) () { }bn n P bn P nμ = ∪

Tab. 3 Bound names

We write { }P n M← for a substitution of the

capability M for each free occurrences of the name
n in the term P . The similarly for { }M n M← .

Structural congruence is shown in Tab. 4 and it is
standard for mobile ambients. The (SAmbNull) rule
is added to get a form of garbage collection, because
of absence of the open operation.

equivalence:
P P≡ (SRefl)
P Q Q P≡ ⇒ ≡ (SSymm)

,P Q Q R P R≡ ≡ ⇒ ≡ (STrans)
congruence:

| |P Q P R Q R≡ ⇒ ≡ (SPar)
! !P Q P Q≡ ⇒ ≡ (SRepl)

[] []P Q M P M Q≡ ⇒ ≡ (SAmb)

Acta Electrotechnica et Informatica No. 4, Vol. 7, 2007 3

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

(: [])
(: [])
P Q n P

n Q
ν

ν
≡ ⇒ ≡P

P
B

B
 (SRes)

. .P Q M P M Q≡ ⇒ ≡ (SAct)
. .P Q M P M Q≡ ⇒ 〈 〉 ≡ 〈 〉 (SCommOut)

(:). (:).P Q n P n Qμ μ≡ ⇒ ≡ (SCommIn)
sequential composition (associativity):
(.). . .M M P M M P′ ′≡ (SPath)
parallel composition (associativity, commutativity
and inactivity):

| |P Q Q P≡ (SParComm)
(|) | | (|)P Q R P Q R≡ (SParAssoc)

|P P≡0 (SParNull)
replication:
! | !P P P≡ (SReplPar)
! ≡0 0 (SReplNull)
restriction and scope extrusion:

(: [])(: [])
(: [])(: [])
n m n m P

m n P
ν ν

ν ν
′≠ ⇒ ≡

′
P P

P P
B B

B B
 (SResRes)

() (: []) |
(: [])(|)
n fn Q n P Q

n P Q
ν

ν
∉ ⇒ ≡P

P
B

B
 (SResPar)

(: []) []
[(: [])]

n m n m P
m n P

ν
ν
≠ ⇒ ≡P

P
B

B
 (SResAmb)

(: [])nν ≡P 0 0B (SResNull)
garbage collection:
(: []) []n nν ≡P 0 0B (SAmbNull)

Tab. 4 Structural congruence

In addition, we identify processes up to renaming

of bound names (α-conversion) as shown in Tab. 5.
By this we mean that these processes are understood
to be identical (e.g. by choosing an appropriate
representation), as opposed to structurally
equivalent.

(: [])
(: []) { }

()

n P
m P n m

m fn P

ν
ν

=
←

∉

P
P

B
B (SAlphaRes)

(:) (:) { }
()

n P m P n m
m fn P

μ μ= ←
∉

 (SAlphaCommIn)

Tab. 5 α-conversion

The reduction rules in Tab. 6 are those for

mobile ambients, with the obvious difference
consisting in the synchronous output and the missing
open operation, and with the new rule for the move
operation similar to the “migrate” instructions for
strong code mobility in software agents.

basic reductions:

[. |] | [] [[|] |]n in m P Q m R m n P Q R→ (RIn)

[[. |] |] [|] | []m n out m P Q R n P Q m R→ (ROut)

[. |] | [] [] | [|]n move m P Q m R n Q m P R→ (RMove)

(:). | . { } |n P M Q P n M Qμ 〈 〉 → ← (RComm)
structural reductions:

| |P Q P R Q R→ ⇒ → (RPar)
[] []P Q n P n Q→ ⇒ → (RAmb)

(: []) (: [])P Q n P n Qν ν→ ⇒ →P PB B (RRes)
, ,P P P Q Q Q P Q′ ′ ′ ′≡ → ≡ ⇒ → (RStruct)

Tab. 6 Reduction rules

3. TYPE SYSTEM

From the huge amount of complex behavioral
properties of mobile processes we abstract (extract)
the type system that is simple enough to be easily
used for expressing communication and mobility
properties of mobile ambients. The main goal of our
abstraction is the control of communication and
mobility. We defined some kind of access rights for
movement of threads and ambients. Usual approach
presents type systems with dependent types. We
defined process types and operation types that are
related to a behavioral scheme of the process. The
behavioral scheme is a construction which controls
the communication and mobility properties of the
process.

3.1. Types and Behavioral Scheme

We define communication types where both
peers, receiver and sender, must be of the same
message type. This allows to keep the sense of the
communication. It also secures the communication
while only exchange of the correct messages is
allowed.

The restriction of the mobility operations is
defined by types applying a behavioral scheme. The
scheme allows setting up the access rights for
traveling of threads and ambients in the ambient
hierarchy space of the system.

Types are defined in Tab. 7 where we present
communication types and message types.

::κ = communication type

 | ⊥ no communication

 | μ
communication of messages of
type μ

::μ = message type

 []| P B] process with behavioral scheme B

 []| ′O aB B operation which changes
behavioral scheme B to ′B

Tab. 7 Types

The behavioral scheme is the structure
(, , ,)Reside Pass Moveκ=B= which contains four

components:

4 Types for Calculus of Mobile Code Applications

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

• κ is the communication type of the
ambient’s threads

• Reside is the set of behavioral schemes of
other ambients where the ambient can stay

• Pass is the set of behavioral schemes of
other ambients that ambient can go through,
it must be Pass Reside⊆

• Move is the set of behavioral schemes of
other ambients where ambient can move its
containing thread

3.2. Typing Rules

Type environment is defined as a set
1 1{ : , , : }l ln nμ μΓ = K where each :i in μ assigns a

unique type iμ to a name in .
The domain of the type environment is defined

by:

1. ()Dom ∅ =∅
2. (, :) () { }Dom n Dom nμΓ = Γ ∪

We define two type formulas for our ambient
calculus:

1. :M μΓ �
2. : []PΓ P� B

Typing rules are shown in Tab. 8 and they are
used to derive type formulas of ambient processes.
We say the process is well-typed when we are able
to derive a type formula for it using our typing rules.
Well-typed processes respect the communication
and mobility restrictions defined in all behavioral
schemes of the system. It means such a process has
the correct behavior. The type assignment system is
clearly syntax-directed and keeps the system simple
enough.

:
:

n
n
μ

μ
∈Γ

Γ �
 (TName)

: [] ()
: []

M Pass
in M

′Γ ∈
′ ′Γ

P
O a

� B B B
� B B

 (TIn)

: [] ()
() ()

: []

M Pass
Reside Reside

out M

′Γ ∈
′⊆

′ ′Γ

P

O a

� B B B
B B

� B B
 (TOut)

: [] ()
: []

M Move
move M

′Γ ∈
′Γ

P
O a

� B B B
� B B

 (TMove)

: []
: []

. : []

M
M

M M

′′ ′Γ
′ ′′Γ
′ ′Γ

O
O

O

a
a

a

� B B
� B B

� B B

(TPath)

: []Γ 0 P� B
 (TNull)

: [] : []
| : []

P P
P P

′Γ Γ
′Γ

P P
P

� B � B
� B

 (TPar)

: []
! : []
P
P

Γ
Γ

P
P

� B
� B

 (TRepl)

: [] : []
()

[] : []

P M
Reside

M P

Γ Γ
′∈

′Γ

P P

P

� B � B
B B
� B

(TAmb)

, : [] : []
(: []) : []
n P

n Pν
′Γ

′Γ
P P

P P
B � B

� B B
 (TRes)

: [] : []
. : []

M P
M P

′Γ Γ
′Γ

O P
P

a� B B � B
� B

 (TAct)

: [] : ()
. : []

P M
M P

μ κ μΓ Γ =
Γ 〈 〉

P
P

� B � B
� B

 (TCommOut)

, : : [] ()
(:). : []

n P
n P

μ κ μ
μ

Γ =
Γ

P
P

� B B
� B

 (TCommIn)

Tab. 8 Typing rules

3.3. Soundness of the System

The usual property of subject reduction holds,
which guarantees the soundness of the system by
ensuring that typing is preserved by computation.

Soundness theorem: Let : []PΓ P� B for some
Bf. Then:

1. P Q≡ implies : []QΓ P� B
2. P Q→ implies : []QΓ P� B

Proof: The proof is standard, by induction on the
derivations of P Q≡ and P Q→ . Let’s consider
only rule (RMove):

We assume [. |] | []P n move m P P m P′ ′′ ′′′= ,
[] | [|]Q n P m P P′′ ′ ′′′= , and
[. |] | [] : []n move m P P m P′ ′′ ′′′Γ P� B . This is given

by (TPar), so that [. |] : []n move m P P′ ′′Γ P� B and
[] : []m P′′′Γ P� B . These are given by (TAmb), so

that : []nnΓ P� B , . | : []nmove m P P′ ′′Γ P� B and
()nReside∈B B for some nB , and : []mmΓ P� B ,

: []mP′′′Γ P� B and ()mReside∈B B for some mB .
This is given by (TPar), so that

. : []nmove m P′Γ P� B , : []nP′′Γ P� B and this is
given by (TAct), so that : []nmove m ′Γ O a� B B
and : []P′ ′Γ P� B for some ′B . This is given by
(TMove), so that : []mmΓ P� B ,

: []m nmove mΓ O a� B B and ()m nMove∈B B ,
then m′ =B B and : []mP′Γ P� B . Then according
(TAmb) [] : []n P′′Γ P� B where ()nReside∈B B
and [|] : []m P P′ ′′′Γ P� B where ()mReside∈B B
and we conclude [] | [|] : []n P m P P′′ ′ ′′′Γ P� B from
(TPar).

Acta Electrotechnica et Informatica No. 4, Vol. 7, 2007 5

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

4. MODELING MOBILE CODE PARADIGMS

Now we can look to how our typed calculus can
express mobile code paradigms. Let’s assume three
mobile code paradigms [7]:

• remote evaluation,
• code on demand, and
• mobile agent.

4.1. Remote Evaluation

Remote evaluation is performed when a client
sends a piece of code to the server and server
evaluates the code and client can get the results back
from the server. Also very general client-server
paradigm can be expressed similar way as remote
evaluation.

We assume application of the server named
Server, which executes transferred code P from the
client application named Client. The result of the
execution is sent back to the client as a message M.

[]
[. . . | (:).]

|

Server s S
Client c move s P move c M x C
System Server Client

μ
=
= 〈 〉
=

In order to make the System well-typed we define
following behavioral schemes of the processes in the
system:

(, , ,)
(,{ }, ,)
(,{ }, ,{ })c sμ

= ⊥ ∅ ∅ ∅
= ⊥ ∅ ∅
= ∅

S

B
B B
B B B
As we can see schemes express that both Server

and Client can be executed in the System and Client
can move threads (code for remote evaluation) to the
Server.

4.2. Code on Demand

Code on demand describes the situation where a
client wants to perform a code that is presented by
the server. Client asks for a code and server sends it
to the client where it can be evaluated.

Similarly as for remote evaluation we assume
application of the server named Server, which
provides a code P to the client application named
Client. Client application asks for the code and the
result of execution is processed as message M.

[(: []). . . |]
[. | (:).]

|

c sServer s p p P M S
Client c move s move c x C
System Server Client

μ
= 〈 〉

= 〈 〉
=

O aB B

In order to make the System well-typed we define

following behavioral schemes of the processes in the
system:

(, , ,)
([],{ }, ,{ })
(,{ }, ,{ })

c s c

c sμ

= ⊥ ∅ ∅ ∅
= ∅

= ∅

O aS

B
B B B B B
B B B

As we can see schemes express that both Server
and Client can be executed in the System. Server can
receive path (sequence of movement operations) for
moving the code to the Client. Client can send the
request for the code to the Server.

4.3. Mobile Agent

Mobile agent is a paradigm where an
autonomous code (agent) is sent from the client to
the server. By autonomous we mean that the client
and server do not need to synchronize the agent
invocation and the agent is running independently
and concurrently within the server’s place.

We assume application of the server named
Server, where the agent application named Agent
will be moved from its home application named
Home. The process P of the agent is executed at the
Server and after the execution, Agent is moved back
Home. The movement of the Agent is defined by the
path (sequence of in/out operations) which expresses
travel plan of the agent.

[]
[|]
[.]

|

Server s S
Home h Agent H
Agent a out h in s P out s in h
System Server Home

=
=
=
=

In order to make the System well-typed we define
following behavioral schemes of the processes in the
system:

(, , ,)
(,{ }, ,)
(,{ }, ,)
(,{ , , },{ , },)

s

h

a s h s h

= ⊥ ∅ ∅ ∅
= ⊥ ∅ ∅
= ⊥ ∅ ∅
= ⊥ ∅

B
B B
B B
B B B B B B
As we can see schemes express that Agent can be

executed either at the Server or Home places and
also can move through those places.

5. CONCLUSIONS

We defined formal tool for expressing dynamics
of mobile code applications, which is based on
theory of mobile ambients. Presented changes to the
ambient calculus are suitable for expressing different
kinds of mobility and they avoid ambiguities and
possible maliciousness of some constructions. The
type system statically defines and checks access
rights for authorization of ambients and threads to
move by application of the process behavioral
scheme. The usage of type system is limited by its
very simplicity and it does not prevent more
restrictive properties from being checked at runtime.
We proved the soundness theorem for the type
system and we demonstrated the system by showing
how to model some common applications. We
provided a simple language for distributed system of
mobile agents. As an expressiveness test, we showed
that well-known π-calculus of concurrency and
mobility can be encoded in our calculus in a natural
way [8].

6 Types for Calculus of Mobile Code Applications

ISSN 1335-8243 © 2007 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

REFERENCES

[1] Cardelli, L., Gordon, A. D.: Mobile Ambients.

Theoretical Computer Science, Vol. 240, No.
1, 2000, pp. 177 – 213.

[2] Milner, R., Parrow, J., Walker, D.: A Calculus
of Mobile Processes, Part 1 – 2. Information
and Computation, Vol. 100, No. 1, 1992, pp. 1
– 77

[3] Levi, F., Sangiorgi, D.: Controlling
Interference in Ambients. Proceedings of
POPL’00, ACM Press, New York, 2000, pp.
352 – 364

[4] Bugliesi, M., Castagna, G.: Secure Safe
Ambients. Proceedings of POPL’01, ACM
Press, New York, 2001, pp. 222 – 235

[5] Bugliesi, M., Castagna, G., Crafa, S.: Boxed
Ambients. In B. Pierce (ed.): TACS’01, LNCS
2215, Springer Verlag, 2001, pp. 38 – 63

[6] Fuggeta, A., Picco, G. P., Vigna, G.:
Understanding Code Mobility. IEEE
Transactions on Software Engineering, Vol.
24, No. 5, May 1998, pp. 342 – 361

[7] Ghezi, C., Vigna, G.: Mobile Code Paradigms
and Technologies: A Case Study. Mobile
Agents: 1st International Workshop MA’97,

 LNCS 1219, Springer-Verlag, 1997
[8] Tomášek, M.: Expressing Dynamics of

Mobile Programs. PhD thesis, Technical
University of Košice, 2004

[9] Vokorokos, L., Kleinová, A., Látka, O.:
Network Security on the Intrusion Detection
System Level, Proceedings of IEEE 10th
International Conference on Intelligent
Engineering Systems, London, 2006, pp. 270-
275

BIOGRAPHY

Martin Tomášek was born 1975 in Košice,
Slovakia. He received the master degree in computer
science in 1998 and PhD degree in software and
information systems in 2005 both at the Faculty of
Electrical Engineering and Informatics of the
Technical University of Košice, Slovakia. He is
currently an assistant professor at the Department of
Computers and Informatics of the Faculty of
Electrical Engineering and Informatics of the
Technical University of Košice, Slovakia. His
research interests include distributed systems and
mobile code systems.

