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SUMMARY 
In this paper we present new type system for calculus of mobile ambients. Our approach is suitable for expressing 

dynamic properties of mobile code applications, where the main goal is to avoid ambiguities and possible maliciousness of 
some constructions in calculus of mobile ambients. We define behavioral scheme assigned to process types that statically 
specifies and checks access rights for authorization of ambients and threads to communicate and move. We proved the 
soundness theorem for the new type system and we demonstrated the system by showing how to model typical mobile code 
paradigms that are used to design mobile code applications. 
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1. INTRODUCTION 
 

The calculus of mobile ambients [1] is based on 
concurrency paradigm represented by the π-calculus 
[2]. It introduces the notion of an ambient as a 
bounded place where concurrent computation takes 
place, which can contain nested subambients in a 
hierarchical structure, and which can move in and 
out of other ambients, i.e., up and down the 
hierarchy what rearranges the structure of ambients. 
The communication can only occur locally within 
each ambient through a common anonymous 
channel. Communication between different ambients 
has to be performed by movement and by 
dissolution of ambient boundaries. 

The ambition of mobile ambients is in general to 
express mobile computation and mobile computing. 
Mobile ambients can express in natural way 
dynamic properties (communication and mobility) of 
mobile code systems, but there is still question of 
deeper control and verification of mobility 
properties (like access rights or mobility control). 
Usual approaches apply type systems which add 
more properties to the pure calculus. Our paper 
presents the type system for ambient calculus that 
abstracts various properties of mobility and 
communication as a behavioral scheme of a process. 

Mobile ambients model several computational 
entities: mobile agents, mobile processes, messages, 
packets or frames, physical or virtual locations, 
administrative and security domains in a distributed 
system and also mobile devices. This variety makes 
that in principle there are no differences among 
various kinds of software components when 
expressing by mobile ambients. In mobile ambients 
there are implicitly two main forms of entities, 
which we will respectively call threads and 
ambients. Threads are unnamed sequences of 
primitive actions to be executed sequentially, 
generally in concurrency with other threads. They 
can perform communication and drive their 

containers through the spatial hierarchy, but cannot 
individually go from one ambient to another. 
Ambients are named containers of concurrent 
threads. They can enter and exit other ambients, 
driven by their internal processes, but cannot 
directly perform communication. It is very important 
to ensure indivisibility and autonomous behavior of 
ambients (this is also important e.g. for objects). 

Communication between ambients is represented 
by the movement of other ambient of usually shorter 
life, which have their boundaries dissolved by an 
open action to expose their internal threads 
performing local communication operations. Such 
capability of opening an ambient is potentially 
dangerous [3, 4, 5]. It could be used inadvertently to 
open and thus destroy the individuality of an object 
or mobile agent. Remote communication is usually 
emulated as a movement of such ambients 
(communication packages) in the hierarchy 
structure. 

We explore a different approach, where we 
intend to keep the purely local character of 
communication so that no hidden costs are present in 
the communication primitives, but without open 
operation. This solves the problem of dissolving 
boundaries of ambients, but disables interactions of 
threads from separate ambients. We have to 
introduce new operation move for moving threads 
between ambients. The idea comes from mobile 
code programming paradigms [6] where moving 
threads can express strong mobility mechanism, by 
which the procedure can (through move operation) 
suspend its execution on one machine and resume it 
exactly from the same point on another (remote) 
machine. This solves the problem of threads 
mobility and by moving threads between ambients 
we can emulate communication between the 
ambients. 

Such adaptations of mobile ambients operations 
we can express computational entities of mobile 
programs in more natural way. Another purpose for 
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this approach is to prefer simplicity and 
understandability of designed type system for 
mobile ambients later on. 
 
2.  THE AMBIENT CALCULUS 
 

We define abstract syntax and operational 
semantics of our calculus. It is based on abstract 
syntax and operational semantics of ambient 
calculus including our new constructions. 
 
2.1.  Abstract Syntax 
 

The abstract syntax of the terms of our calculus 
in Tab. 1 is the same as that of mobile ambients 
except for the absence of open and the presence of 
the new operation move for moving threads between 
ambients. We allow synchronous output and the 
asynchronous version is its particular case. 
 

::M =  mobility operations 

  | n  name 

  | in M  move ambient into M  

  | out M  move ambient out of M  

  | move M  move thread into M  

  .| M M ′  path 

::P =  processes 

  | 0  inactive process 

  || P P′  parallel composition 

  !| P  replication 

  [ ]| M P  ambient 

  ( : [ ])| n Pν P B  name restriction 

  .| M P  action of the operation 

  .| M P〈 〉  synchronous output 

  ( : ).| n Pμ  synchronous input 
 

Tab. 1  Abstract syntax 
 

We introduce types already in the term syntax, in 
the synchronous input and in the name restriction. 
The defined terms are not exactly the terms of our 
calculus, since the type constructions are not yet 
taken into account, this is done by the typing rules in 
the next section. 
 
2.2.  Operational Semantics 
 

The operational semantics is given by a 
reduction relation along with a structural congruence 
the same way as those for mobile ambients. 

Each name of the process term can figure either 
as free (Tab. 2) or bound (Tab. 3). 

( ) { }fn n n=  
( ) ( )fn in M fn M=  
( ) ( )fn out M fn M=  
( ) ( )fn move M fn M=  
( . ) ( ) ( )fn M M fn M fn M′ ′= ∪  
( )fn = ∅0  
( | ) ( ) ( )fn P P fn P fn P′ ′= ∪  
(! ) ( )fn P fn P=  
( [ ]) ( ) ( )fn M P fn M fn P= ∪  
(( : [ ]) ) ( ) { }fn n P fn P nν = −P B  
( . ) ( ) ( )fn M P fn M fn P= ∪  
( . ) ( ) ( )fn M P fn M fn P〈 〉 = ∪  
(( : ). ) ( ) { }fn n P fn P nμ = −  

 
Tab. 2  Free names 

 
( )bn n = ∅  
( ) ( )bn in M bn M=  
( ) ( )bn out M bn M=  
( ) ( )bn move M bn M=  
( . ) ( ) ( )bn M M bn M bn M′ ′= ∪  
( )bn = ∅0  
( | ) ( ) ( )bn P P bn P bn P′ ′= ∪  
(! ) ( )bn P bn P=  
( [ ]) ( ) ( )bn M P bn M bn P= ∪  
(( : [ ]) ) ( ) { }bn n P bn P nν = ∪P B  
( . ) ( ) ( )bn M P bn M bn P= ∪  
( . ) ( ) ( )bn M P bn M bn P〈 〉 = ∪  
(( : ). ) ( ) { }bn n P bn P nμ = ∪  

 
Tab. 3  Bound names 

 
We write { }P n M←  for a substitution of the 

capability M  for each free occurrences of the name 
n  in the term P . The similarly for { }M n M← . 

Structural congruence is shown in Tab. 4 and it is 
standard for mobile ambients. The (SAmbNull) rule 
is added to get a form of garbage collection, because 
of absence of the open  operation. 
 
equivalence: 
P P≡  (SRefl) 
P Q Q P≡ ⇒ ≡  (SSymm) 

,P Q Q R P R≡ ≡ ⇒ ≡  (STrans) 
congruence: 

| |P Q P R Q R≡ ⇒ ≡  (SPar) 
! !P Q P Q≡ ⇒ ≡  (SRepl) 

[ ] [ ]P Q M P M Q≡ ⇒ ≡  (SAmb) 
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( : [ ])
( : [ ])
P Q n P

n Q
ν

ν
≡ ⇒ ≡P

P
B

B
 (SRes) 

. .P Q M P M Q≡ ⇒ ≡  (SAct) 
. .P Q M P M Q≡ ⇒ 〈 〉 ≡ 〈 〉  (SCommOut) 

( : ). ( : ).P Q n P n Qμ μ≡ ⇒ ≡  (SCommIn) 
sequential composition (associativity): 
( . ). . .M M P M M P′ ′≡  (SPath) 
parallel composition (associativity, commutativity 
and inactivity): 

| |P Q Q P≡  (SParComm) 
( | ) | | ( | )P Q R P Q R≡  (SParAssoc) 

|P P≡0  (SParNull) 
replication: 
! | !P P P≡  (SReplPar) 
! ≡0 0  (SReplNull) 
restriction and scope extrusion: 

( : [ ])( : [ ])
( : [ ])( : [ ])
n m n m P

m n P
ν ν

ν ν
′≠ ⇒ ≡

′
P P

P P
B B

B B
 (SResRes) 

( ) ( : [ ]) |
( : [ ])( | )
n fn Q n P Q

n P Q
ν

ν
∉ ⇒ ≡P

P
B

B
 (SResPar) 

( : [ ]) [ ]
[( : [ ]) ]

n m n m P
m n P

ν
ν
≠ ⇒ ≡P

P
B

B
 (SResAmb) 

( : [ ])nν ≡P 0 0B  (SResNull) 
garbage collection: 
( : [ ]) [ ]n nν ≡P 0 0B  (SAmbNull) 

 
Tab. 4  Structural congruence 

 
In addition, we identify processes up to renaming 

of bound names (α-conversion) as shown in Tab. 5. 
By this we mean that these processes are understood 
to be identical (e.g. by choosing an appropriate 
representation), as opposed to structurally 
equivalent. 
 
( : [ ])
( : [ ]) { }

( )

n P
m P n m

m fn P

ν
ν

=
←

∉

P
P

B
B  (SAlphaRes) 

( : ) ( : ) { }
( )

n P m P n m
m fn P

μ μ= ←
∉

 (SAlphaCommIn) 

 
Tab. 5  α-conversion 

 
The reduction rules in Tab. 6 are those for 

mobile ambients, with the obvious difference 
consisting in the synchronous output and the missing 
open  operation, and with the new rule for the move  
operation similar to the “migrate” instructions for 
strong code mobility in software agents. 
 
basic reductions: 

[ . | ] | [ ] [ [ | ] | ]n in m P Q m R m n P Q R→  (RIn) 

[ [ . | ] | ] [ | ] | [ ]m n out m P Q R n P Q m R→  (ROut) 

[ . | ] | [ ] [ ] | [ | ]n move m P Q m R n Q m P R→  (RMove) 

( : ). | . { } |n P M Q P n M Qμ 〈 〉 → ←  (RComm)
structural reductions: 

| |P Q P R Q R→ ⇒ →  (RPar) 
[ ] [ ]P Q n P n Q→ ⇒ →  (RAmb) 

( : [ ]) ( : [ ])P Q n P n Qν ν→ ⇒ →P PB B  (RRes) 
, ,P P P Q Q Q P Q′ ′ ′ ′≡ → ≡ ⇒ →  (RStruct) 

 
Tab. 6  Reduction rules 

 
 
3.  TYPE SYSTEM 
 

From the huge amount of complex behavioral 
properties of mobile processes we abstract (extract) 
the type system that is simple enough to be easily 
used for expressing communication and mobility 
properties of mobile ambients. The main goal of our 
abstraction is the control of communication and 
mobility. We defined some kind of access rights for 
movement of threads and ambients. Usual approach 
presents type systems with dependent types. We 
defined process types and operation types that are 
related to a behavioral scheme of the process. The 
behavioral scheme is a construction which controls 
the communication and mobility properties of the 
process. 
 
3.1. Types and Behavioral Scheme 
 

We define communication types where both 
peers, receiver and sender, must be of the same 
message type. This allows to keep the sense of the 
communication. It also secures the communication 
while only exchange of the correct messages is 
allowed. 

The restriction of the mobility operations is 
defined by types applying a behavioral scheme. The 
scheme allows setting up the access rights for 
traveling of threads and ambients in the ambient 
hierarchy space of the system. 

Types are defined in Tab. 7 where we present 
communication types and message types. 
 

::κ =  communication type 

  | ⊥  no communication 

  | μ  
communication of messages of 
type μ  

::μ =  message type 

  [ ]| P B]  process with behavioral scheme B

  [ ]| ′O aB B  operation which changes 
behavioral scheme B  to ′B  

 
Tab. 7  Types 

 
The behavioral scheme is the structure 
( , , , )Reside Pass Moveκ=B=  which contains four 

components:
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• κ  is the communication type of the 
ambient’s threads 

• Reside  is the set of behavioral schemes of 
other ambients where the ambient can stay 

• Pass  is the set of behavioral schemes of 
other ambients that ambient can go through, 
it must be Pass Reside⊆  

• Move  is the set of behavioral schemes of 
other ambients where ambient can move its 
containing thread 

 
3.2.  Typing Rules 
 

Type environment is defined as a set 
1 1{ : , , : }l ln nμ μΓ = K  where each :i in μ  assigns a 

unique type iμ  to a name in . 
The domain of the type environment is defined 

by: 

1. ( )Dom ∅ =∅  
2. ( , : ) ( ) { }Dom n Dom nμΓ = Γ ∪  

We define two type formulas for our ambient 
calculus: 

1. :M μΓ �  
2. : [ ]PΓ P� B  

Typing rules are shown in Tab. 8 and they are 
used to derive type formulas of ambient processes. 
We say the process is well-typed when we are able 
to derive a type formula for it using our typing rules. 
Well-typed processes respect the communication 
and mobility restrictions defined in all behavioral 
schemes of the system. It means such a process has 
the correct behavior. The type assignment system is 
clearly syntax-directed and keeps the system simple 
enough. 
 

:
:

n
n
μ

μ
∈Γ

Γ �
 (TName) 

: [ ] ( )
: [ ]

M Pass
in M

′Γ ∈
′ ′Γ

P
O a

� B B B
� B B

 (TIn) 

: [ ] ( )
( ) ( )

: [ ]

M Pass
Reside Reside

out M

′Γ ∈
′⊆

′ ′Γ

P

O a

� B B B
B B

� B B
 (TOut) 

: [ ] ( )
: [ ]

M Move
move M

′Γ ∈
′Γ

P
O a

� B B B
� B B

 (TMove) 

: [ ]
: [ ]

. : [ ]

M
M

M M

′′ ′Γ
′ ′′Γ
′ ′Γ

O
O

O

a
a

a

� B B
� B B

� B B
 

(TPath) 

: [ ]Γ 0 P� B
 (TNull) 

: [ ] : [ ]
| : [ ]

P P
P P

′Γ Γ
′Γ

P P
P

� B � B
� B

 (TPar) 

: [ ]
! : [ ]
P
P

Γ
Γ

P
P

� B
� B

 (TRepl) 

: [ ] : [ ]
( )

[ ] : [ ]

P M
Reside

M P

Γ Γ
′∈

′Γ

P P

P

� B � B
B B
� B

 
(TAmb) 

, : [ ] : [ ]
( : [ ]) : [ ]
n P

n Pν
′Γ

′Γ
P P

P P
B � B

� B B
 (TRes) 

: [ ] : [ ]
. : [ ]

M P
M P

′Γ Γ
′Γ

O P
P

a� B B � B
� B

 (TAct) 

: [ ] : ( )
. : [ ]

P M
M P

μ κ μΓ Γ =
Γ 〈 〉

P
P

� B � B
� B

 (TCommOut)

, : : [ ] ( )
( : ). : [ ]

n P
n P

μ κ μ
μ

Γ =
Γ

P
P

� B B
� B

 (TCommIn) 

 
Tab. 8  Typing rules 

 
 
3.3. Soundness of the System 
 

The usual property of subject reduction holds, 
which guarantees the soundness of the system by 
ensuring that typing is preserved by computation. 

Soundness theorem: Let : [ ]PΓ P� B  for some 
Bf. Then: 

1. P Q≡  implies : [ ]QΓ P� B  
2. P Q→  implies : [ ]QΓ P� B  

Proof: The proof is standard, by induction on the 
derivations of P Q≡  and P Q→ . Let’s consider 
only rule (RMove): 

We assume [ . | ] | [ ]P n move m P P m P′ ′′ ′′′= , 
[ ] | [ | ]Q n P m P P′′ ′ ′′′= , and 
[ . | ] | [ ] : [ ]n move m P P m P′ ′′ ′′′Γ P� B . This is given 

by (TPar), so that [ . | ] : [ ]n move m P P′ ′′Γ P� B  and 
[ ] : [ ]m P′′′Γ P� B . These are given by (TAmb), so 

that : [ ]nnΓ P� B , . | : [ ]nmove m P P′ ′′Γ P� B  and 
( )nReside∈B B  for some nB , and : [ ]mmΓ P� B , 

: [ ]mP′′′Γ P� B  and ( )mReside∈B B  for some mB . 
This is given by (TPar), so that 

. : [ ]nmove m P′Γ P� B , : [ ]nP′′Γ P� B  and this is 
given by (TAct), so that : [ ]nmove m ′Γ O a� B B  
and : [ ]P′ ′Γ P� B  for some ′B . This is given by 
(TMove), so that : [ ]mmΓ P� B , 

: [ ]m nmove mΓ O a� B B  and ( )m nMove∈B B , 
then m′ =B B  and : [ ]mP′Γ P� B . Then according 
(TAmb) [ ] : [ ]n P′′Γ P� B  where ( )nReside∈B B  
and [ | ] : [ ]m P P′ ′′′Γ P� B  where ( )mReside∈B B  
and we conclude [ ] | [ | ] : [ ]n P m P P′′ ′ ′′′Γ P� B  from 
(TPar).
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4.  MODELING MOBILE CODE PARADIGMS 
 

Now we can look to how our typed calculus can 
express mobile code paradigms. Let’s assume three 
mobile code paradigms [7]: 

• remote evaluation, 
• code on demand, and 
• mobile agent. 

 
4.1. Remote Evaluation 
 

Remote evaluation is performed when a client 
sends a piece of code to the server and server 
evaluates the code and client can get the results back 
from the server. Also very general client-server 
paradigm can be expressed similar way as remote 
evaluation. 

We assume application of the server named 
Server, which executes transferred code P from the 
client application named Client. The result of the 
execution is sent back to the client as a message M. 

[ ]
[ . . . | ( : ). ]

|

Server s S
Client c move s P move c M x C
System Server Client

μ
=
= 〈 〉
=  

In order to make the System well-typed we define 
following behavioral schemes of the processes in the 
system: 

( , , , )
( ,{ }, , )
( ,{ }, ,{ })c sμ

= ⊥ ∅ ∅ ∅
= ⊥ ∅ ∅
= ∅

S

B
B B
B B B  
As we can see schemes express that both Server 

and Client can be executed in the System and Client 
can move threads (code for remote evaluation) to the 
Server. 
 
4.2. Code on Demand 
 

Code on demand describes the situation where a 
client wants to perform a code that is presented by 
the server. Client asks for a code and server sends it 
to the client where it can be evaluated. 

Similarly as for remote evaluation we assume 
application of the server named Server, which 
provides a code P to the client application named 
Client. Client application asks for the code and the 
result of execution is processed as message M. 

[( : [ ]). . . | ]
[ . | ( : ). ]

|

c sServer s p p P M S
Client c move s move c x C
System Server Client

μ
= 〈 〉

= 〈 〉
=

O aB B

 
In order to make the System well-typed we define 

following behavioral schemes of the processes in the 
system: 

( , , , )
( [ ],{ }, ,{ })
( ,{ }, ,{ })

c s c

c sμ

= ⊥ ∅ ∅ ∅
= ∅

= ∅

O aS

B
B B B B B
B B B  

As we can see schemes express that both Server 
and Client can be executed in the System. Server can 
receive path (sequence of movement operations) for 
moving the code to the Client. Client can send the 
request for the code to the Server. 
 
4.3. Mobile Agent 
 

Mobile agent is a paradigm where an 
autonomous code (agent) is sent from the client to 
the server. By autonomous we mean that the client 
and server do not need to synchronize the agent 
invocation and the agent is running independently 
and concurrently within the server’s place. 

We assume application of the server named 
Server, where the agent application named Agent 
will be moved from its home application named 
Home. The process P of the agent is executed at the 
Server and after the execution, Agent is moved back 
Home. The movement of the Agent is defined by the 
path (sequence of in/out operations) which expresses 
travel plan of the agent. 

[ ]
[ | ]
[ . . . . . ]

|

Server s S
Home h Agent H
Agent a out h in s P out s in h
System Server Home

=
=
=
=  

In order to make the System well-typed we define 
following behavioral schemes of the processes in the 
system: 

( , , , )
( ,{ }, , )
( ,{ }, , )
( ,{ , , },{ , }, )

s

h

a s h s h

= ⊥ ∅ ∅ ∅
= ⊥ ∅ ∅
= ⊥ ∅ ∅
= ⊥ ∅

B
B B
B B
B B B B B B  
As we can see schemes express that Agent can be 

executed either at the Server or Home places and 
also can move through those places. 
 
5.  CONCLUSIONS 
 

We defined formal tool for expressing dynamics 
of mobile code applications, which is based on 
theory of mobile ambients. Presented changes to the 
ambient calculus are suitable for expressing different 
kinds of mobility and they avoid ambiguities and 
possible maliciousness of some constructions. The 
type system statically defines and checks access 
rights for authorization of ambients and threads to 
move by application of the process behavioral 
scheme. The usage of type system is limited by its 
very simplicity and it does not prevent more 
restrictive properties from being checked at runtime. 
We proved the soundness theorem for the type 
system and we demonstrated the system by showing 
how to model some common applications. We 
provided a simple language for distributed system of 
mobile agents. As an expressiveness test, we showed 
that well-known π-calculus of concurrency and 
mobility can be encoded in our calculus in a natural 
way [8]. 
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