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ABSTRACT 
This paper deals with the laws of information in decentralized control systems. In the case of decentralized control of complex 

systems, often referred to hierarchical systems, theoretically analyze the possibility of using an n-dimensional information theory to 
deal with such systems. N-dimensional information theory is an interesting tool to deal with these systems. On the basis of 
information theory the partition laws of information rates are listed. These laws are fundamental requirements for complex systems 
that must be met and by their quantification one can be able to compare these complex control systems and track how different parts 
of the system communicate and collaborate with others, etc. In the final section the deterministic partition law of information rates 
and its possibility of use for dynamical systems are presented. 
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1. INTRODUCTION 

Control systems are becoming increasingly interesting 
from the perspective of information structure and 
information flow between various parts of systems. 
American scientist – the pioneer of cybernetics W. Ross 
Ashby in his book Introduction to cybernetics presented a 
different view on controllers and controlled systems as is 
now generally used. Ashby’s approach is based on the 
theory of information, where systems are regarded as 
transmission channels, which are capable to transfer 
different amounts of information. His work is among the 
experts of this field, highly prized today. Based on similar 
considerations and simple examples he worked on in the 
world well known law of requisite variety [1]. Its 
importance for the theory of automatic control is very 
significant. It is therefore necessary to devote sufficient 
attention. For its verification it is necessary to deal with 
information theory, probability and entropy, since variety 
is very closely related to entropy. W. Ross Ashby 
formulated this law for centralized control systems, but it 
is interesting that a similar principle can be also applied to 
systems with hierarchical structure, for example to 
decentralized control systems. In this regard continued his 
student Roger C. Conant, and he formulated laws of 
information’s, which control such systems [2]. His major 
contribution was the decomposition of systems into 
subsystems by using theory of information. The only one 
disadvantage is that these laws are not quite good 
applicably in the study and analysis of dynamic systems. 
The role of this paper is to remove this disadvantage and 
modify these laws for use in decentralized dynamical 
systems and verify its on a selected example of a complex 
system. 

2. PRINCIPLE OF REQUISITE VARIETY 

The subject of regulation is very wide in its 
applications, covering as it does most of the activities in 
physiology, sociology, ecology, economics, and much of 
the activities in almost every branch of science and life. 
Further, the types of regulator that exist are almost 

bewildering in their variety. Let us therefore forget all 
about regulation and simply suppose that we are watching 
two players, R and D, who are engaged in a game (see 
Table 1): 

Table 1  Table of game for two players 

 
R 

α β γ 

D 
1 b a c 
2 a c b 
3 c b a 

 
D must play first, by selecting a number, and thus a 

particular row. R, knowing this number, then selects a 
Greek letter, and thus a particular column. The italic letter 
specified by the intersection of the row and column is the 
outcome. If it is an a, R wins; if not, R loses. Examination 
of the table soon shows that with this particular table R 
can win always. Whatever value D selects first, R can 
always select a Greek letter that will give the desired 
outcome. R has, complete control of the outcome [3]. 

From all possible tables let us eliminate those that 
make R’s game too easy to be of interest. Let us consider, 
then, only those tables in which no column contains a 
repeated outcome. When this is so R must select his move 
on full knowledge of D’s move; i.e. any change of D’s 
move must require a change on R’s part (see Table 2) [3]. 

In the case if outcome is letter k, then we have 
transformation which uniquely specifies a set of 
outcomes. It can now be stated that the variety in this set 
of outcomes cannot be less than D’s variety/R’s variety 
i.e., in this case 9/3. In general if no two elements in the 
same column are equal, and if a set of outcomes is 
selected by R, one from each row, and if the table has r 
rows and c columns, then the variety in the selected set of 
outcomes cannot be fewer than r/c. 

We can now look at this game still with the restriction 
that no element may be repeated in a column from a 
slightly different point of view. If the varieties are 
measured logarithmically, and if the same conditions hold, 
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Table 2  Table of game for two players, where no column 
contains the same two results 

 R 
α β γ 

D 

1 f f k 
2 k e f 
3 m k a 
4 b b b 
5 c q c 
6 h h m 
7 j d d 
8 a p j 
9 l n h 

 
then the theorem takes a very simple form. Let VD be the 
variety of D, VR that of R, and VO that of the outcome (all 
measured logarithmically). Then the previous section has 
proved that VO cannot be less, numerically, than the value 
of VD – VR. Thus VO’s minimum is VD – VR. If VD is given 
and fixed, VD – VR can be lessened only by 
a corresponding increase in VR. Thus the variety in the 
outcomes, if minimal, can be decreased further only by 
a corresponding increase in that of R. This is the law of 
Requisite Variety: only variety in R can force down the 
variety due to D [4]. Only variety can destroy variety. 

3. PROBABILITY, ENTROPY AND MUTUAL 
INFORMATION  

Probability, entropy and mutual information or 
transmissions are the main part of information theory. 
Information theory is science investigating quantitative 
laws related to transfer and processing of information. At 
the present, the theory of information is necessary 
mathematical tool for the study of various control 
processes, what is often forgotten. Receiving, processing, 
transmission and storage of information of various kind is 
the main task of each control system. To solve different 
tasks of information theory it is necessary to learn how 
quantitative measure the content of information which is 
transmitted or received through the communication 
channel. 

3.1. Probability 

Let’s look at the system, which is able to receive final 
amount of states 1 2, , ... , nx x x  with probabilities 

1 2, , ... , np p p , where 

( ) ,i ip P X x= ∼  (1) 

is probability, that system X receive state ix . It is clear 
that 

1

1.
n

i
i

p
=

=∑  (2) 

These data can be written in table form (see Table 3), 
where in the first row are states of the system and in the 
second row are corresponding probabilities [5]. 

Table 3  Probability table 

ix  1x  2x  ... 
nx  

ip 1p  2p  ... 
np  

 
This table is identical with table table of random discrete 
variable with values 1 2, , ... , nx x x  and their 

probabilities 1 2, , ... , np p p . 

3.2. Entropy 

As a measure of uncertainty of the system (or discrete 
variable) X in information theory is special characteristic 
called entropy. Entropy is main concept of information 
theory. Entropy of the system is sum of products of 
probabilities of different states and the logarithms of these 
probabilities with the opposite sign 

1

( ) log
n

i a i
i

H X p p
=

= −∑  (3) 

The main properties of entropy are: entropy is equal to 
zero, if one of the states is certain and others are 
impossible; entropy has maximum if all states of the 
system are equally probable. Consider the simplest system 
X, which has two equally probable states (see Table 4). 

Table 4  Probability table of system  
with two equally probable states 

ix  1x  2x  

ip
1

2
 

1

2
 

 
Actually entropy calculated by using (3) is 

2 2

1 1 1 1
( ) log log 1.

2 2 2 2
H X = − + =⎛ ⎞

⎜ ⎟
⎝ ⎠

 Base unit for 

entropy is bit (from English word binary digit) [5]. 

3.3. Mutual information 

Mutual information, transmission or transinformation 
is measure of amount by which two variables are related, 
i.e., are not statistically independent. Transmission 
between two variables is denoted by 1 2( : )T X X  and 
defined through probabilities or by 

1 2 1 2 1 2

1 1 2

2 2 1

( : ) ( ) ( ) ( , )

( ) ( | )

( ) ( | )

T X X H X H X H X X

H X H X X

H X H X X

= + −

= −

= −

 (4) 

It is symmetric and measures the amount by which 
knowledge of one variable reduces uncertainty about 
other, or the amount by which the joint uncertainty 

1 2( , )H X X  is smaller than it would be with 1X  and 2X  
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independent (then, 1 2 1 2( , ) ( ) ( )H X X H X H X= + ). The 
transmission is therefore a measure of relatedness between 
variables, which accounts for its usefulness in systems 
science. 1 2( : )T X X  falls in the interval 

{ }[ ]1 20, min ( ), ( )H X H X , being 0 if and only if 1X  and 

2X  are statistically independent and maximum if and only 
if one variable determines the other [2]. 

3.4. Method and examples for calculation of entropy 

For application of the principle of requisite variety for 
each control systems, it is necessary to design method of 
measurement and calculating of entropy. Like entropy of 
experiments, entropy of signals is also related with 
probability.  

Let consider urn with 20 balls. 8 balls are white, 5 
balls are black and 7 balls are red. Balls are well mixed. 
Balls are drawing out in random way and then put back 
into the urn. After several attempts, we found that each 
colour ball is drawing out with likelihood ratio as the ratio 
of the frequency representation of each colour. So the 
probability that white ball is drawing out is 8/20=40%, the 
black ball is 5/20=25% and red ball is 7/20=35% (see Fig. 
1). 

Entropy of this experiment calculated by using (3) is 
2 2 20,4.log 0, 4 0, 25.log 0,25 0,35.log 0,35 1,5589

bit.
H = − − − =  
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Fig. 1  Probability of drawing out the balls from urn 

Consider now discrete signal with values 1, 2 and 3 
during 10 seconds with sampling time 1 second, according 
to this sequence {1,  3,  3,  2,  1,  3,  3,  1,  2,  3}S =  (see 
Fig. 2). 

Value 1 occurs in signal 3 times, value 2 occurs 2 
times and value 3 occurs 5 times in signal. This occurs are 
in literature often called as multiplicity. From multiplicity 
is possible to calculate probabilities of values 1, 2 and 3. 
Probability for value 1 is 3/10, for value 2 is 2/10 and for 
value 3 is 5/10. Entropy for this discrete signal with three 

values is 
2 2 2

3 3 2 2 5 5
. log . log . log

10 10 10 10 10 10
H = − − − =  

1, 4855 bit= . In the left part of figure (see Fig. 2) is 
discrete signal and in the right part is histogram. Based on 
this histogram we can determine the frequency of specific 
value, then probability of specific value and so entropy of 
current signal. 
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Fig. 2  Discrete signal with histogram 

4. DECENTRALIZED CONTROL SYSTEMS 

As complex systems we can consider systems that 
consist of large number of parts that are interacting with 
each other. Since certain difficulties arise in control such 
system as a whole, i.e. centralized, it is appropriate to use 
decomposition – particulate whole system to N 
independent subsystems and control whole system as 
decentralized. 

4.1. Decomposition of complex system into subsystems 

Look now at complex system in terms of information 
theory. Since in most cases we deal with dynamical 
systems – systems that change their properties depending 
on time and information theory has no natural relationship 
to real time, it is necessary to add some additional 
considerations. The information theory can be used only 
in the event that we have measured real data from 
complex system. 

After each sustained observation of a complex 
dynamic system, we get some protocol, which include 
values of observed variables and corresponding time 
 

Table 5  Protocol of complex system 

Time States of system 

0 0 0

1( , ..., )nx x  

1 1 1

1( , ..., )nx x  

... ... 

j 1( , ..., )j j

nx x  

... ... 
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vector. Thus, if the variables are 1 2, , ..., nx x x , and the 
system, as n-tuple, was observed at times indicated by 
superscripts, the protocol will consist of an actual value 
given to each symbol (see Table. 5). 

A most important case occurs when the system is 
state-determined, i.e. when n-tuple 1jx +  is the same 
function of jx  whatever the value of j. The protocol can 
be represented equivalently by the single function 

1 ( )j jx f x+ = , or ( )x f x′ =  [6]. When this is so, an 
important new set of variables, 2n in number, 

1 2 1 2( , , ..., , , , ..., )n nx x x x x x′ ′ ′  represents the transitions, i.e. 
the behaviour in real time, one state of the new system (of 
2n variables) corresponding to one transmission of the old. 

Between these new 2n variables all the various 
measures of entropy, transmission and interaction may be 
computed exactly as over any other set of variables, but 
they can now be interpreted by their relations with real 
time. Thus ( : )i iT x x′  measures something very close to 
concept of “cause and effect”, for it measures how much 
the latter value at ix  is dependent on the prior value. If 

larger sets are studied 0 0 1 1

1 1 1( , ..., , , ..., , , ..., )j j

n n nx x x x x x , such 

a transmission as 0( : )j

i iT x x  would measure how much 

the variable ix  shows j steps later in time, the effect of its 
earlier value. The measure thus catches something 
essential in the concept of ix ’s “memory” [6]. 

4.1.1. Example of the decomposition of complex 
system 

Consider now complex system according to [7], which 
can be write in the form 

1 2

2 1 3 1

3 4

4 3 1 2

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

x t x t

x t x t x t u t

x t x t

x t x t x t u t

=

= − − +

=

= − − +

�

�

�

�

  (5) 

Respectively in discrete form using forward difference 

(Euler method), we have
( ) ( )

( )
x t T x t

x t
T

+ −
=� , then 

1 1 2

2 2 1 3 1

3 3 4

4 4 3 1 2

( 1) ( ) ( )

( 1) ( ) ( ) ( ) ( )

( 1) ( ) ( )

( 1) ( ) ( ) ( ) ( )

x k x k Tx k

x k x k Tx k Tx k Tu k

x k x k Tx k

x k x k Tx k Tx k Tu k

+ = +

+ = − − +

+ = +

+ = − − +

 (6) 

where T is sampling interval equal to 0.1 seconds. After 
simple simulation of this system with initial conditions 
[0.5 0.3 -0.5 -0.1] and inputs represented with Heaviside 
functions, we get the protocol mentioned above with 
corresponding sample data, which represent the four state 
variables measured at corresponding sampling interval. 
On the following figure (see Fig. 3) is time behaviour of 
state variables of complex system for selected time period. 
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Fig. 3  Time behaviour of state variables with selected initial 

conditions and inputs 

From these measured data we get sets of variables, 
generally labelled as jS , where { }1 2, , ... ,

jj j j jnS x x x= . 

Then we can denote ( )jH S  as entropy 

of { }1 2, , ... ,
jj j j jnS x x x= . It is a nonnegative measure of 

the total amount of activity or variability in the set jS , and 
it is calculated by a formula similar to (3). The entropy of 
the union of two sets iS  and jS  is denoted by ( , )i jH S S . 

The observed transmission between iS  and jS  is denoted 

( : )i jT S S  and is defined as follows [8] 

( : ) ( ) ( ) ( , )i j i j i jT S S H S H S H S S= + −  (7) 

This is nonnegative measure of strength of the relation 
between iS  and jS  [8]. 

Suppose now a system is in fact “ nearly 
decomposable” into subsystems 1 2, , ... , mS S S , then it 
would be expect that the constraint holding between the 
subsystem over a short time span would be weak 
compared to the constraint within them. The constraint 
holding within the j-th subsystem { }1 2, , ... ,

jj j j jnS x x x=  

will be measured reasonably by wjT  defined as 

' ' '

1 1 2 2( : : : : : : )
j jwj j j j j jn jnT T x x x x x x= ⋅⋅⋅  (8) 

since this transmission measures nonindependance of all 
variables in the subsystem over time increment. The 
strength of the relation between the i-th and j-th 
subsystems over one time increment is measured by bijT , 
defined as  

( )' ', : ,bij i i j jT T S S S S=  (9) 

and the constraint between all subsystem over one time 
increment is measured by bT  
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( )' ' '

1 1 2 2, : , : : ,b m mT S S S S S S= ⋅⋅ ⋅  (10) 

In a nearly decomposable system bijT  is small compared to 

wi wjT T+ , for all i and j. The calculation of these 
transmissions thus allows verification of a proposed 
grouping of variables into subsystems. The last question 
remains – how does infer a proposed grouping from the 
observations? A reasonable measure of the effect of ix  on 

jx  one time increment later is the normalized 

transmission ijt  

'

'

( : )

( )
i j

ij

j

T x x
t

H x
=  (11) 

According to above mentioned equations it is necessary to 
calculate the entropy of all state variables and joint 
entropy of pairs ( , )i jx x′  where 1, 2, 3, 4i =  
and 1, 2, 3, 4j = . To calculate normalized transmissions 

ijt  between states of complex systems equation (11) is 
used and all these values are written in the table (see Table 
6). 

Table 6  Normalized transmission ijt  between states of system 

ijt  
jx′  

1x′  2x′  3x′  4x′  

ix  

1x  0,7955 0,5328 0,2573 0,1328

2x  0,5410 0,7416 0,1415 0,2416

3x  0,2629 0,1427 0,7832 0,5427

4x  0,1410 0,2416 0,5415 0,7416

 
According to table (see Table 6), which contains 

calculated values of ijt  we are able to decide whether 
complex system is decomposable intoto subsystems. 
According to values from table (see Table 6), it is clear 
that a complex system is nearly decomposable into 
subsystems 1S  and 2S , where { }1

1 2,S x x=  

and { }2

3 4,S x x= . This is only the initial idea about 
complex system and his subsystems, which however must 
be tested. Based on [8], the complex system is 
decomposable into subsystems, if couplings between 
variables that make up the subsystem are stronger than the 
couplings between separate subsystems. In our case, this 
fact can be verified only by calculate the transmissions 
using equations (8) and (9). Then for subsystem 1S  is 

1 1 1 2 2( : : : ) 13, 47 bit/sample timewT T x x x x′ ′= =  and for  
2S  is

2 3 4 3 4( : : : ) 13, 63 bit/sample timewT T x x x x′ ′= = . 
1wT  

and 
2wT  are transmissions that measures the 

nonindependance of all variables in the subsystem 1S  
and 2S  over one time increment – sample time. It remains 
only to calculate the strength of coupling between 
subsystems 1S  and 2S  using equation (9). Then 

( ) ( )
12 1 1 2 2 1 1 2 2 3 4 3 4( , ) : ( , ) ( , , , ) : ( , , , )bT T S S S S x x x x x x x x′ ′ ′ ′ ′ ′= =

12
5, 47 bit/sample timebT = . Since 

12 1 2b w wT T T+ ⇒�  
5, 47 13, 47 16, 63+� , the calculations confirm that the 
complex system is indeed nearly decomposable into 
subsystems 1S  and 2S . 

4.2. Decentralized control of complex system 

After decomposition of complex system into 
subsystems, we are able to design decentralized controller 
for each subsystem. In this section, two basic methods of 
decentralized control are introduced, namely decentralized 
control with quadratic criterion (partially decentralized 
control) and totally decentralized control. 

4.2.1. Decentralized control with quadratic criterion 

If we have complex system (5), so we know that is 
decomposable into two subsystems and thus global 

criterion is 
2

1
i

i

J J
=

= ∑ , while the local criterion is 

( )
0

1
( ), ( ) ( ), ( )

2i i i i i i iJ x t Q x t u t R u t dt
∞

= +∫ , for 1, 2i = . 

Control strategy for first subsystem is in the form 
1 1

1 1 1 1 1 1 1 1( ) ( )T Tu t R B K x t R B h− −= − +  and for second 

subsystem in the form 1 1

2 2 2 2 2 2 2 2( ) ( )T Tu t R B K x t R B h− −= − + , 

where 1K  and 2K  are solution of Riccati equations (12) 

1T T

i i i i i i i i i i iK K A A K K B R B K Q−= − − + −�  (12) 

which are calculated off-line, 1h  and 2h  are solution of 
(13) and are calculated on-line. 

1

1 1

( )

( ) ( ( ) )

T T

i i i i i i i

N N
T

i ij j ji j j j
j j
j i j i

h A B R B K h

K A x t A K x t h

−

= =
≠ ≠

= − − +

+ + −∑ ∑

�

 (13) 

Proposed decentralized control with quadratic criterion 
can then be applied to control complex system (5). The 
main task of this control strategy is to convert the system 
from given initial conditions to steady state with 
minimizing a given criterion function. It should be noted, 
that control is designed to compensate the effect of 
interactions that exist between subsystems, like 
compensation of measurable disturbances in optimal 
control systems. States of complex system controlled by 
decentralized control with quadratic criterion are shown 
on figure (see Fig. 4). 
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Fig. 4  States of complex system – decentralized control with 
quadratic criterion 

4.2.2. Totally decentralized control 

If we have complex system (5), so we know that is 
decomposable into two subsystems and thus global 

criterion is 
2

1
i

i

J J
=

= ∑ , while the local criterion is 

( )
0

1
( ), ( ) ( ), ( )

2i i i i i i iJ x t Q x t u t R u t dt
∞

= +∫ , for 1, 2i = . 

Control strategy for first subsystem is in the form 
1

1 1 1 1 1( ) ( )Tu t R B K x t−= −  and for second subsystem in the 

form 1

2 2 2 2 2( ) ( )Tu t R B K x t−= − , where 1K  and 2K  are 
solution of Riccati equations (12). 
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Fig. 5  States of complex system – totally decentralized control 

States of complex system, which is controlled by 
totally decentralized control, are shown on figure (see Fig. 
5). In this method of decentralized control, subsystems are 
considered as completely independence i.e. without 
interactions, while in a complex system are present. The 
disadvantage of this method is that it must be ensured not 
only the stability of subsystems, but also the stability of a 
complex system as a whole. 

4.3. Decentralized control and information theory 

As seen on figure (see Fig.4 and Fig. 5) from previous 
chapter, both methods of decentralized control convert 
complex system from specified initial conditions to steady 
state with minimizing a given criterion function. Let’s 
look on these methods from information theory point of 
view. For better review and subsequent analysis will be 
better, that we look on internal structure of complex 
system (5), as shown on figure (see Fig. 6) [9]. 

 

Fig. 6  Internal structure of complex system – information theory 
point of view 

Figure (see Fig. 6) captures the internal structure of a 
complex system in discrete form (6) if the system is 
deterministic and its evolution can be represent by 
deterministic function ( )( 1) ( )x k f x k+ = . 

In this case Deterministic Partition Law of Information 
Rates (DPLIR) proposed by Roger C. Conant [2] is an 
appropriate tool to analyze complex systems in terms of 
information and information structure. Our complex 
system (5) respectively (6) is dynamic system, which 
changing its properties in time, so we will try to adapt this 
law to its properties [9]. Of course we assume that the 
complex system is decomposed into subsystems as shown 
on the figure (see Fig. 6) [9]. 

Let’s start with the first subsystem, labelled as 1S . 
According to the figure (see Fig. 6), system contains 
internal and output variables. Sets of output variables are 
denoted as 0

iS  and sets of internal variables are denoted as 

int

iS  for i-th subsystem. So { }1

0 2S x′= , { }1

int 1 2 1, ,S x x x′=  

and { }1

1 2 1 2, , ,S x x x x′ ′=  for the first subsystem 1S . For 

total rate (of information flow) 1F  in the first subsystem 
we can write 

1 1

1 2 1 2( ) ( ) ( ) ( ) ( )j
j

F H x H x H x H x H x′ ′= = + + +∑  (14) 

Throughput rate 1

tF  can be expressed as 

1 1

0 2( ) ( )tF H S H x′= =  (15) 
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For blockage rate 1

bF  we obtain 

1 1 1 1 1 1

int 0 int 0 0

1 2 1 2 2

( | ) ( , ) ( )

( , , , ) ( )
bF H S S H S S H S

H x x x x H x

= = − =

′ ′ ′= −
 (16) 

Finally, coordination rate 1

cF  (of information flow) in the 
first subsystem can be written as 

[
]

1

1 2 1 2 1

2 1 2 1 2 1 2

1 2 1 2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( : : : )

( : : : )

cF H x H x H x H x H x

H x H x H x T x x x x

T x x x x

′ ′= + + + − +

′ ′ ′ ′+ + + −

′ ′=

=  (17) 

Second subsystem denoted as 2S  have output and 
internal variables, that forming a sets { }2

0 4S x′=  and 

{ }2

int 3 4 3, ,S x x x′= . For total rate (of information flow) 2F  
in the first subsystem we can write 

2 2

3 4 3 4( ) ( ) ( ) ( ) ( )j
j

F H x H x H x H x H x′ ′= = + + +∑  (18) 

Throughput rate 2

tF  can be expressed as 

2 2

0 4( ) ( )tF H S H x′= =  (19) 

For blockage rate 2

bF  we obtain 

2 2 2 2 2 2

int 0 int 0 0

3 4 3 4 4

( | ) ( , ) ( )

( , , , ) ( )
bF H S S H S S H S

H x x x x H x

= = −

′ ′ ′= −
 (20) 

Finally, coordination rate 2

cF  (of information flow) in the 
first subsystem can be written as 

[
]

2

3 4 3 4 3

4 3 4 3 4 3 4

3 4 3 4

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( : : : )

( : : : )

cF H x H x H x H x H x

H x H x H x T x x x x

T x x x x

′ ′= + + + − +

′ ′ ′ ′+ + + −

′ ′=

=  (21) 

Table (see Table 7) shows and summarizes results of 
computation of Deterministic Partition Law of 
Information Rates for Dynamical Systems (DPLIRDS) 
derived in [9]. Units for all rates are bit per sample time. 

Table 7  Decentralized control in the terms of Deterministic 
Partition Law of Information Rates 

Decentralized 
control 

1F  
1

tF  1

bF  1

cF  

Partially 7,9770 1,9063 0,6382 5,5325
Totally 11,681 2,7987 0,9549 7,9276

 2F  
2

tF  2

bF  2

cF  

Partially 7,6910 1,6625 0,8075 5,2210
Totally 12,435 3,0909 0,8195 8,5250

5. CONCLUSIONS 

Based on above derived and obtained law we can draw 
some remarks and conclusions. Consider figure (see Fig. 
6), if we have full knowledge of inputs, then each state 
can be seen as output of communication channel. 
Uncertainty of output of communication channel can be 
affected only by change of the statistical properties of its 
input, which in our case corresponds to two different 
methods of decentralized control. We considered that 
uncertainty might be represented by computation of 
entropy. Figures (see Fig. 4 and Fig. 5) shown that 
uncertainties of all states with partially decentralized 
control are smaller then with totally decentralized control. 
The sum of all these uncertainties corresponds with total 
rate (of information flow). Of course not every state of the 
system must be its output and that is why the throughput 
rate only measures uncertainty of outputs variables. 
Blockage rate in control systems is negligible, because 
control systems don’t process information directly and 
blocking of irrelevant information in the internal structure 
of system do not play major role, as confirmed by our 
results (see Table 7). Coordination rate has the greatest 
value of all rates. The main reason is in the 
decomposition, because the main idea of decomposition as 
mentioned above, assumes that the relationship between 
variables within the subsystem must be much larger than 
relationship between whole subsystems. The obtained 
results suggest that in partially decentralized control 
coordination rate is much smaller than in totally 
decentralized control. The reason is very simple. In 
partially decentralized control exists information link 
between controllers, i.e. controller for first subsystem has 
information from controller of second subsystem and vice 
versa. On the other hand in totally decentralized control 
this link no exists, so decentralized controllers control 
subsystems as independent parts and that is why the 
coordination rate must increase. Similar conclusions can 
be done from comparison of numerical criteria of control 
performance quality. But these criteria cannot explain why 
these differences occur and method presented in this paper 
can explain this. 
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