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ABSTRACT
Nowadays complex software systems are designed and implemented with the help of the object-oriented paradigm principally.

However, object-oriented languages support the object-oriented paradigm in different ways with different constructs. C++ has a
sophisticated inheritence notation based on access modifiers. C++ distinguishes virtual, pure virtual and non-virtual methods. Java
uses final classes and methods to disable inheritance. However, Java does not support multiple inheritance. Eiffel allows renaming
inherited methods.

In this paper we present some method utilites for C++ to create safer and more flexible object-oriented systems. We present how
the method renaming can be implemented. We developed constructs to create final and unhidable methods. These constructs are
implemented with the help of C++ template facilities. We present scenarios where one can write safer code with our constructs.
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1. INTRODUCTION

Object-oriented programming (OOP) is still the most
common programming paradigm. It represents an attempt
to make programs more closely model the way people think
about and deal with the world. In the older styles of pro-
gramming, a programmer who is faced with some problem
must identify a computing task that needs to be performed
in order to solve the problem. In this way, programming
consists of finding a sequence of instructions that will ac-
complish that task. In the object-oriented realm instead of
tasks we find objects - entities that have behaviors, that hold
information, and that can interact with one another. Pro-
gramming consists of designing a set of objects that model
the problem. Software objects in the program can represent
real or abstract entities in the problem domain [12]. This is
supposed to make the design of the program more natural
and hence easier to get right and easier to understand.

Many programming languages support object-
orientation. Simula 67 was the very first language that
supports this paradigm. Languages like C++, C#, and Java
are the most famous ones nowadays. Eiffel has been de-
veloped in 1986 by Bertrand Meyer [11], which is also an
object-oriented language. Script languages are typically
not based on the object-oriented paradigm. However, for
instance the current version of PHP supports OOP. In fact,
different languages support this paradigm with different
constructs [8]. These constructs are highly analyzed and
compared with each other because of the popularity of the
object-oriented programming paradigm [3, 6, 7, 9].

For example, C++ does not have a superclass of every
classes, but in Java class Object is the root of the class hier-
archy. C++ distinguishes between public, private and pro-
tected inheritance. One can write final class in Java and C#
which are cannot be superclasses [1, 4].

C++ is a multiparadigm programming language that
supports the object-oriented paradigm [18]. Multiple in-
heritance is allowed, but there is no language construct for
final classes, final methods, or renaming methods [2]. In
C++, a method in a base class is hidden, when a method
is declared in a derived class with the same name but with

different parameter types and/or constness [16]. Although,
this can be avoided with using declarations, this scenario is
strange [12].

C++ offers the template construct for writing generic
functions and classes. However, a new direction has been
developed with this construct called template metapro-
gramming (TMP). Metaprograms – among other advan-
tages – are able to check conditions in compilation time. If
the condition fails, the compilation process can be stopped.
However, in this paper we do not deal with metaprograms,
but we take advantage of the power of templates.

We make an effort to make C++ much more sophisti-
cated. We developed useful extensions for C++ to deal with
object-orientation in more sophisticated way [14,15,20,21].

This paper is organized as follows. Unhidable methods
in C++ are detailed in section 2. Method renaming scenar-
ios are described in section 3. Development of final meth-
ods is detailed in section 4. We conclude our results and
describe our future work in section 5.

2. UNHIDABLE METHODS

It is common mistake in C++ that the signature of vir-
tual methods disagree in the base and derived class. In this
case the virtual methods are not overriden, but hidden. Let
us consider the hereinafter code snippet:

struct X

{

virtual void f()

{

std::cout << "X::f()" << std::endl;

}

virtual ~X() {}

};

struct Y:X

{

virtual void f() const

{
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std::cout << "Y::f()" << std::endl;

}

};

int main()

{

X* x = new X();

x->f();

delete x;

x = new Y();

x->f();

delete x;

}

The output of this program is the following:

X::f()

X::f()

This output seems to be strange. The source of the prob-
lem is that the signature of virtual method is not exactly the
same in base and in derived class. There is a const modi-
fier in class Y.

This situation should be avoided. However, the com-
pilers compile this code without error message and only
some of them give a warning. To overcome this situation
we take advantage of C++ templates facility and preproces-
sor is used for making our solution convenient to use.

First, we wrap a pointer to a member function into a
template class:

#define __PTR_MEM(paramlist) template \

<class T> \

struct __Ptr_Mem \

{ \

void (T::*p)paramlist; \

};

After that, we create the tester template class that instan-
tiates the previous template. This tester class checks if the
two wrapped pointers can be assigned to each other. If the
signature of method of base and derived class is the exactly
the same, then this assignment works properly. But, if the
signatures are not the same, then this assignment results in
compilation error message, that it cannot be converted.

#define __TEST(funcname) template \

<class Base, class Der> \

struct __Test \

{ \

__Ptr_Mem<Base> a; \

__Ptr_Mem<Der> b; \

__Test() \

{ \

a.p = &Base::funcname; \

b.p = &Der::funcname; \

} \

};

After these macros, we develop the macro that start to
check this feature. Macro calls the previous macros, and
creates a new method in the anonymous namespace, called

test if hidden methods, which calls the Test tem-
plate’s default constructor and checks if the signatures are
same:

#define TEST_IF_HIDDEN_METHODS( Base, Der, \

function, paramlist) \

namespace { \

__PTR_MEM(paramlist) \

__TEST(f) \

void __test_if_hidden_methods() \

{ \

__Test<Base, Der>(); \

} \

}

Let us consider how can one use this solution to disable
hide the virtual method in this section very first example:

TEST_IF_HIDDEN_METHODS( X, Y, f, () )

This macro must be called in the global space. If the
code compiles, then the signature is the same in base and
derived class, which means proper usage of virtual meth-
ods. This causes a minimal overhead, because it creates a
global Test object and executes two assignment between
two member-to-pointers at runtime, which is cheap opera-
tion. Otherwise, the code does not compile, results in the
following error message:

error: cannot convert ’void (X::*)()’

to ’void (Y::*)()const’

in assignment

In this section we provide a solution to avoid the prob-
lem of hidden virtual methods, which appears when the sig-
nature of a method is not the same in the base and derived
class.

3. METHOD RENAMING

In the Eiffel programming language the inherited
features can be renamed. When two methods inherited
from different base classes have the same name this lan-
guage element helps to avoid ambiguity in the derived class.
While this disambiguation is compulsory in Eiffel, C++ al-
lows us to redefine both methods once as a single method of
the derived class. It can happen, however, that the two base
classes represents different concepts, and the name clash is
simply coincidental. Then we may want to redefine those
semantically different methods in the derived class(es) sep-
arately just like if they had nothing in common. Through a
simple example we show how to rename inherited methods
in C++ and thus be able to override equally named methods
separately. Let A and B be our base classes each having a
method foo:

struct A

{

virtual void foo();

};

struct B
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{

virtual void foo();

};

and a derived class C:

struct C : public A, public B

{

virtual void foo(); // overrides both

};

Instead of merging the two methods into one we would
like to have separate methods, one for each inherited foo:

struct C : public A, public B

{

virtual void A_foo();

virtual void B_foo();

};

We can achieve that by introducing two extra helper
classes, one for each base class, whose purpose is to re-
name A::foo to A foo and B::foo to B foo respectively.
For symmetry reasons we present only RenA:

struct RenA : public A

{

virtual void A_foo() { A::foo(); }

virtual void foo() { A_foo(); }

};

By default A foo behaves like A::foo. This way if
A foo is not overridden, its calls through the derived classes
will call foo’s original implementation in A. On the other
hand, a call to foo through a pointer or reference to A

should result in a call to A foo, this is the actual renam-
ing step. Calls to foo through the base class interface leads
the execution to the implementation of A foo either in this
or in the appropriate derived class.

Note that it is advisable to set foo final in this class to
avoid misuse in derived classes by further overriding foo

instead of its renamed equivalent. In the internals of the
C++ object model, the foo function remains present in all
derived classes in the virtual dispatch table, after all it is
part of the hierarchy’s interface. The solution for finalizing
a method can be found in 4.

Having this rename helper class implemented for B as
well there is nothing more left than changing the base
classes of C from A to RenA and from B to RenB respec-
tively:

struct C : public RenA, public RenB

Now we can use the renamed methods in C as if they
were the original.

This solution nicely fits to other features in connection
with method overriding. The overridden version of A foo

can for example call its original implementation in A by
simply calling A::foo just like if we did not have the helper
class:

void A_foo()

{

// added code

A::foo(); // can simply call

// base if needed

// added code

}

A caveat with the helper class that one should imple-
ment do-nothing forwarders for each constructor in it to
make them available in the derived class. In C++ the con-
structor’s initializer list is allowed to refer only to direct
base classes. With a few lines of preprocessing metapro-
gramming (see boost.preproc [10]) an even more comfort-
able syntax can be achieved:

struct A { ... };

DEF_RENAMER(RenA, A,

((foo) (A_foo))

// ((bar) (A_bar)) // we can add more

// renames easily

)

// similarly for B

struct C : public RenA, public RenB { ... };

4. FINAL METHODS

In the Java programming language it is possible to de-
clare a member function as final [5]. It means that the mem-
ber function cannot be overridden in subclasses. There are
two benefits of that: first is concerning to the program de-
sign and the code quality, the second belongs to the per-
formance (compiler can inline these functions). In the C++
programming language there are good mechanisms to make
functions inline, but there is no language support to prevent
overriding virtual member functions in subclasses.

Stroustrup et. al. [22] presented a solution to stop deriv-
ing of a class. In this chapter we show a solution to make
a C++ virtual member function unoverridable. Let us sup-
pose we have a base class A with a virtual member function
void f(), and we want to make it “final”. In the rest of
the section we suppose the objects are created dynamically,
because in C++ the polymorphism works by pointers. It
works by references also but our solution is limited to point-
ers. One of our future work is to extend it to references as
well.

First, we need to work out that every object of class
A or subclasses of A must be created by a specific fac-
tory function instead of writing new. This factory function
checks whether the function f() is overridden. If not, it cre-
ates a new instance of the class, otherwise emits a compile-
time error message and the compilation fails. To achieve
this we have to define a private operator new in class

A, and declare the factory function as friend.
We need a helper class, which describes the member

function to make final. See below:

template <class C, void (C::*p)()>

class Helper { };
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The first template argument is an arbitrary type and the sec-
ond one is a pointer to the proper member function.

The template<class T> struct Final checks
whether the class T has different member function f from
A::f() in the following way:

template <class T>

struct Final

{

Final()

{

const bool b =

boost::is_same<

Helper<A, &A::f>,

Helper<A, &T::f> >::value;

BOOST_MPL_ASSERT_MSG(

b,

ERROR_INVALID_OVERRIDE_OF_FUNCTION,

(void)

);

}

};

Metafunction is same [10] is provided by the boost library,
and it checks in compile time whether its two template ar-
guments are the same. The macro BOOST MPL ASSERT MSG

[10] creates a compile time error message when its first ar-
gument is false. The second argument is the error message,
and the third one holds some type information which is not
necessary here. If T is subclass of A and the member func-
tion f is not overidden in T then T::f is the same member
function as A::f, thus the two Helper classes have the same
type.
The factory function is the following:

template<typename T>

T* factory()

{

Final<T>();

T* t = new T();

return t;

}

If it can create the temporary Final<T> object, it means
that the member function f is not overridden. Otherwise
the BOOST MPL ASSERT MSG in the constructor of Final

causes a compilation error.
Most of these source codes are generated by preproces-

sor macros in the following way:

struct A

{

virtual void f() {}

PREPARE_FINAL_METHODS

};

SET_FINAL(A, f, void, ())

The macro PREPARE FINAL METHODS generates the pri-
vate operator new and the friend declaration of func-
tion factory. The macro SET FINAL(A, f, void, ())

makes the member function f as final member function. The

first argument of the macro is the class, the second one is
the function, the third one is the return type, and the last
one is the argument type list.

We provide SET FINALn preprocessor macros to define
more than one member functions to final. The n indicates
the number of member functions to set to final. This macro
has n times four arguments. (Four for each member func-
tion like in the previous example.)

The following example shows a complex usage of this
solution:

struct A

{

virtual void f() { /* ... */ }

virtual int g(int, double) { /* ... */ }

virtual char h() { /* ... */ }

virtual void k() { /* ... */ }

PREPARE_FINAL_METHODS

};

SET_FINAL3(A, f, void, (),

A, g, int, (int, double),

A, h, char, () )

struct B : A

{

int g(int, double) { /* ... */ }

};

struct C : A

{

void k() { /* ... */ }

};

int main()

{

B* b = factory<B>(); // ERROR

C* c = factory<C>(); // OK

}

The SET FINAL3 macro creates the specific Helper and
Final classes and factory function for the member functions
f, g and h what we want to set final. The struct B over-
rides the member function g of struct A, and the struct
C does the same with member function k. When we want to
create an instance of B we get the following error message:

assertion_failed(mpl_::failed************

(Final<R>::Final() [with R = C]::

ERROR_INVALID_OVERRIDE_OF_FUNCTION

::************)

This error message occurs because struct B overrides
at least one final member function of its base class A. Hov-
ewer we can create an instance of struct C because mem-
ber function k is not final.

5. CONCLUSION AND FUTURE WORK

In this paper we present implementations of different
object-oriented features in C++ that are not available as lan-
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guage constructs. These features make development easier,
safer and more flexible. The idea of final classes comes
from Java and its implementation takes advantage of C++
templates. The idea of unhidable methods comes from a
frequent mistake when inheritance and overloading is ap-
plied. The solution also uses the C++ template construct.

Defining final member functions is beneficial for both
design and efficiency reasons. While the C++ program-
ming language does not support it natively, we presented
a solution how to apply this object-oriented feature in C++.
In the current phase of developement there is a limitation
of setting member functions as final: if there is a member
function in a base class (called f) to set as final there is not
allowed to create a member function f in the derived classes
even it has different argument types. Our future work is to
improve our solution to eliminate this limitation.
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