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ABSTRACT 
The paper deals with the problem of constructing the stable clustering structure for the uncertain data set. The problem of 

explaining of stability of the clustering structure in automatic classification of objects for varying attributes values is formulated. The 
proposed method of the uncertain data clustering is based on heuristic algorithms of possibilistic clustering. Basic concepts of the 
heuristic approach to possibilistic clustering based on the concept of allotment among fuzzy clusters, a validity measure and 
techniques of the data preprocessing are considered. A method of constructing the set of values of most possible number of fuzzy 
clusters for the uncertain data is provided and a technique of constructing the stable clustering structure is proposed. An illustrative 
example of the proposed technique application to the oil data set is carried out. An analysis of the experimental results is given and 
preliminary conclusions are formulated.  
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1. INTRODUCTION 

Some preliminary remarks are considered in the first 
subsection. Types of clustering structures are defined in 
the second subsection. 

1.1. Preliminary remarks 

The need for mechanisms that help to treat ambiguous, 
fuzzy and vague knowledge explains the grown-up 
interest in fuzzy systems. In particular, fuzzy clustering 
methods have been applied effectively in image 
processing, data analysis and modeling. Heuristic methods 
of fuzzy clustering, hierarchical methods of fuzzy 
clustering and optimization methods of fuzzy clustering 
were proposed by different researchers. 

The most widespread approach in fuzzy clustering is 
the optimization approach and the optimization methods 
of fuzzy clustering are based on the concept of fuzzy c -
partition which is expressed as follows:  

1
1




c

l
liu , 10  liu , (1) 

where c  is the number of fuzzy clusters lA , cl ,,1  in 

the fuzzy c -partition },,1|{)( ncclAXP l   and liu , 

ni ,,1  is the membership degree. So, the fuzzy c -

partition can be arrayed as a )( nc   matrix ][ liuP  .  

Objective function-based fuzzy clustering algorithms can 
be divided into two types: object versus relational. The 
best known object approach to fuzzy clustering is the 
method of fuzzy c -means [1]. From other hand, the most 
popular examples of fuzzy relational clustering are the 
RFCM-algorithm [2], and the ARCA-algorithm [3].  

The most important problem of fuzzy clustering is 
neither the choice of the numerical procedure nor the 
distance to use but concerns the number c  of fuzzy 
clusters to look for. This is the so-called cluster validity 
problem. The classical approach to cluster validity for 
fuzzy clustering is based on directly evaluating the fuzzy 
c -partition. Many authors have proposed several 

measures of cluster validity associated with fuzzy c -
partitions. For example, the partition coefficient is 
described in [1] and compactness and separation index 
was defined in [4]. The compactness and separation index 
is most popular cluster validity criteria. Notable, that the 
index is appropriate for the ARCA-algorithm, because the 
ARCA-algorithm, though being a relational clustering 
algorithm, generates prototypes. 

A possibilistic approach to clustering was proposed by 
Krishnapuram and Keller in [5] and developed by other 
researchers. This approach can be considered as a way in 
the optimization approach in fuzzy clustering because all 
methods of possibilistic clustering are objective function-
based methods. A concept of possibilistic partition is a 
basis of possibilistic clustering methods and membership 
values li , cl ,,1 , ni ,,1  can be interpreted as 

the values of typicality degree. For each object ix  

ni ,,1  the grades of membership should satisfy the 
conditions of a possibilistic partition:  

0
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c

l
li , 10  li . (2) 

So, the family of fuzzy sets },,1|{)( ncclAX l   

is the possibilistic partition of the initial set of objects 
},...,{ 1 nxxX   if condition (2) is met.  

Objective function-based fuzzy clustering algorithms 
are the most widespread methods in fuzzy clustering. 
However, heuristic algorithms of fuzzy clustering display 
low level of a complexity and high level of essential 
clarity. Some heuristic clustering algorithms are based on 
a definition of a cluster concept and the aim of these 
algorithms is cluster detection conform to a given 
definition. These algorithms are called algorithms of 
direct classification or direct clustering algorithms. 

An outline for a new heuristic method of fuzzy 
clustering was presented in [6], where a basic version of 
direct clustering algorithm was described and the version 
of the algorithm is called the D-AFC(c)-algorithm [7]. The 
D-AFC(c)-algorithm can be considered as a direct 
algorithm of possibilistic clustering. The fact was 
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demonstrated in [7]. The heuristic approach to 
possibilistic clustering was developed, for example, in [8]. 

1.2. Types of clustering structures  

Most fuzzy clustering techniques are designed for 
handling crisp data with their class membership functions. 
However, the data can be uncertain. Different types of 
uncertainty can be characterizing the initial data which 
must be processed by clustering algorithms. For example, 
a brief review of uncertain data clustering methods is 
given in [9]. An interval uncertainty of the initial data is a 
basic type of uncertainty in clustering problems. The 
interval-valued data is a particular case of the three-way 
data and the type of uncertainty is the subject of the 
consideration. So, a problem of the three-way clustering 
arises.  

The problem of clustering the three-way data can be 
formulated as follows [9]. Let },...,{ 1 nxxX   is set of 

objects, where objects are indexed i , ni ,,1  ; each 

object ix  is described by 1m  attributes, indexed 1t , 

1
1 ,,1 mt  , so that an object ix  can be represented by 

vector ),,,,( 111 m
i

t
iii xxxx  ; every attribute 1ˆ tx , 

11 ,,1 mt   can be characterized by 2m  values of 2-ary 

attributes, so that )ˆ,,ˆ,,ˆ(ˆ )()()1( 212111 mt
i

tt
i

t
i

t
i xxxx  . So, the 

three-way data can be presented by a poly-matrix as 
follows:  
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

 
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In other words, the three-way data are the data, which 
are observed by the values of 1m  attributes with respect to 

n  objects for 2m  situations. The purpose of the clustering 

is to classify the set },...,{ 1 nxxX   into c  fuzzy clusters 

and the number of clusters c  can be unknown because it 
is depend on the situation. 

In the situation of interval uncertainty, the only 

information that we have about the actual value 1ˆ t
ix  of 

some attribute 1ˆ tx , },,1{ 11 mt   for the object ix , 

},,1{ ni   is that the value belongs to some interval, 

and if max}{min,2 t  then ]ˆ,ˆ[ˆ (max)(min) 111 t
i

t
i

t
i xxx  . So, 

22 m , and the situation can be described by the 

expression )ˆ,ˆ(ˆ (max)(min) 111 t
i

t
i

t
i xxx  . Obviously, that if 

)()()1( 21211 ˆˆˆ mtttt xxx    for all 11 ,,1 mt  , 

ni ,,1   then the initial data are the ordinary object 
data and it can be presented as the usual matrix of 
attributes, ]ˆ[ˆ 1

1

t
imn xX  .  

The initial data matrix (3) can be represented as a set 
of 2m  matrices ]ˆ[ˆ 12

1

t
i

t
mn xX  , ni ,,1 , 11 ,,1 mt   and 

the “plausible” number c  of fuzzy clusters can be 
different for each matrix ]ˆ[ˆ 12

1

t
i

t
mn xX  , },,1{ 22 mt  . A 

clustering structure of the data set depends on the type of 
the initial data.  

Three types of the clustering structure were defined in 
[10]. Firstly, if the number of clusters c  is some constant 
for each matrix ]ˆ[ˆ 12

1

t
i

t
mn xX  , },,1{ 22 mt   and the 

coordinates of prototypes },,{ 1 с   of the clusters 

},,{ 1 сAA   are constant, then the clustering structure 

called stable. Secondly, if the actual number of clusters c  
is some constant for each matrix ]ˆ[ˆ 12

1

t
i

t
mn xX  , 

},,1{ 22 mt   and the coordinates of prototypes of the 

clusters are not constant, then the clustering structure 
called quasi-stable. Thirdly, if the number of clusters c  is 
different for matrices ]ˆ[ˆ 12

1

t
i

t
mn xX  , 22 ,,1 mt   then the 

clustering structure called unstable.  
Detection of most “plausible” fuzzy clusters in the 

sought clustering structure for the uncertain data set X  
can be considered as a final aim of classification and the 
construction of the set of values of most possible number 
of fuzzy clusters with corresponding possibility degrees is 
the important step in this way. 

The aim of the work is a detailed consideration of the 
method of the discovering the unique clustering structure, 
which corresponds to most natural allocation of objects 
among fuzzy clusters for the uncertain data set. In 
particular, the allocation among the most “plausible” 
unknown number of fuzzy clusters с  must be detected.  

So, the contents of this paper is as follows: in the 
second section basic concepts of the heuristic method of 
possibilistic clustering, a validity measure and techniques 
of the data preprocessing are considered, in the third 
section the method of constructing the stable clustering 
structure is proposed, in the fourth section an example of 
application of the proposed method to the Ichino and 
Yaguchi’s oil data set [11] is given, in the fifth section 
some final remarks are stated. 

2. HEURISTIC POSSIBILISTIC CLUSTERING 

Basic concepts of the heuristic method of possibilistic 
clustering based on the allotment among fuzzy clusters 
concept are considered in the first subsection. A validity 
measure for the D-AFC(c)-algorithm is presented in the 
second subsection and techniques of the data 
preprocessing are given in the third subsection of the 
section.  

2.1. Basic definitions 

Direct heuristic algorithms of possibilistic clustering 
can be divided into two types: prototype-based [8] versus 
relational [6], [7]. The concept of fuzzy tolerance is the 
basis for the concept of fuzzy  -cluster. That is why 
definition of fuzzy tolerance must be considered in the 
first place. 

Let },...,{ 1 nxxX   be the initial set of elements and 

]1,0[:  XXT  some binary fuzzy relation on X  with 

]1,0[),( jiT xx , Xxx ji  ,  being its membership 

function. Fuzzy tolerance is the fuzzy binary intransitive 
relation which possesses the symmetricity property 

),(),( ijTjiT xxxx   , Xxx ji  , , (4) 
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and the reflexivity property 

1),( iiT xx , Xxi  . (5) 

Different fuzzy tolerances were considered in [6]. 
However, the essence of the method here considered does 
not depend on the kind of fuzzy tolerance and basic 
concepts are described for any fuzzy tolerance T .  

Fuzzy similarity relation S  is the fuzzy binary relation 
which possesses the symmetricity property (4), the 
reflexivity property (5), and the (max-min)-transitivity 
property:  

( , ) ( ( , ) ( , )),

, , .
j

S i k S i j S j k
x X

i j k

x x x x x x

x x x X

  


  

 
 (6) 

Let some fuzzy binary relation be represented by a 
matrix R  of size n  and define 

RR 1 , RRR nn 1 , ,3,2n . (7) 

The fuzzy binary relation R


 is a transitive closure of 
the relation R  and R


 is defined by the expression [12]  

nRRRR 
 21 , (8) 

where an operation   for two different fuzzy relations 
dR  and gR  is defined by the expression 

Xxxxxxxxx jijiRjiRjiSR gdgd  ,),,(),(),( 


, (9) 

and the composition gd RR   of fuzzy relations dR  and 
gR  is defined in [12] as follows:  

( , ) ( ( , ) ( , )),

, .

d g d g

j
i k i j j kR R R Rx X

i k

x x x x x x

x x X

  


  

 


 (10) 

The transitive closure T


 of some usual fuzzy tolerance 
T  is a fuzzy similarity relation S . Let R  denote a binary 
fuzzy relation. A level fuzzy relation )(R  is defined as 

   ]1,0(,),(),(,),(
)()(  

 jiRjiRji xxxxRxxR , (11) 

where R  is  -level of the fuzzy relation R  and 

),( jiR xx  is the membership function of the fuzzy 

relation R . The membership function of the level fuzzy 
relation )(R  for some   can be defined as follows:  



 


otherwise

xxifxx
xx

jiRjiR
jiR

,0

),(),,(
),(

)(





. (12) 

Let },...,{ 1 nxxX   be the initial set of objects. Let T  

be a fuzzy tolerance on X  with ]1,0[),(
1

jiT xx , 

Xxx ji  ,  being its membership function and   be the 

 -level value of T , ]1,0( . Columns or lines of the 

fuzzy tolerance matrix are fuzzy sets },...,{ 1 nAA . Let 

},...,{ 1 nAA  be fuzzy sets on X , which are generated by a 

fuzzy tolerance T . The  -level fuzzy set 

 XxxxxA iiAiAi
l

ll  ,)(|))(,()(   is fuzzy  -

cluster or, simply, fuzzy cluster. So, ll AA )( , ]1,0( , 

},,{ 1 nl AAA   and li  is the membership degree of 

the element Xxi   for some fuzzy cluster lA )( , 

]1,0( , ],1[ nl  . Value of   is the tolerance threshold 

of fuzzy clusters elements. The membership degree of the 

element Xxi   for some fuzzy cluster lA )( , ]1,0( , 

],1[ nl   can be defined as a 





 


otherwise

Axx l
iiA

li

l

,0

),( 
 . (13) 

where an  -level })(|{   iAi
l xXxA l , ]1,0(  

of a fuzzy set lA  is the support of the fuzzy cluster lA )( . 

The value of a membership function of each element 
of the fuzzy cluster is the degree of similarity of the object 
to some typical object of fuzzy cluster. Moreover, 
membership degree defines a possibility distribution 

function for some fuzzy cluster lA )( , ]1,0( , and the 

possibility distribution function is denoted by )( il x . 

Notable that the number c  of fuzzy clusters can be equal 
the number of objects, n .  

Let T  is a fuzzy tolerance on X , where X  is the set 

of elements, and },...,{ )(
1

)(
nAA   is the family of fuzzy 

clusters for some . The point ll
e A  , for which 

li
x

l
e

i

 maxarg , l
i Ax  , ]1,0( , (14) 

is called a typical point of the fuzzy cluster lA )( , 

],1[ nl  . A fuzzy cluster can have several typical points 

and symbol e  is the index of the typical point. 

Let }2,,1|{)( )( ncclAXR l
z  
  be a family of 

fuzzy clusters for some value of tolerance threshold  , 
which are generated by some fuzzy tolerance T  on the 
initial set of elements },...,{ 1 nxxX  . If condition 

0
1




c

l
li , Xxi   (15) 

is met for all lA )( , cl ,1 , nc  , then the family is the 

allotment of elements of the set },...,{ 1 nxxX   among 

fuzzy clusters }2,,1,{ )( ncclAl   for some value of 

the tolerance threshold  . It should be noted that several 

allotments )(XRz
  can exist for some tolerance threshold 

 . That is why symbol z  is the index of an allotment. 
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The condition (15) requires that every object ix , 

ni ,,1  must be assigned to at least one fuzzy cluster 
lA )( , cl ,1 , nc   with the membership degree higher 

than zero. Obviously, the definition of the allotment 
among fuzzy clusters (15) is similar to the definition of 
the possibilistic partition (2).  

Allotment ]}1,0(,,1|{)( )(  
 nlAXR l
I  of the set 

of objects among n  fuzzy clusters for some threshold   
is the initial allotment of the set },...,{ 1 nxxX  . In other 

words, if a matrix of some level fuzzy tolerance in the 
sense of formulae (11) and (12) is given then lines or 

columns of the matrix are level fuzzy sets lA )( , nl ,1 , 

]1,0(  and the level fuzzy sets are fuzzy clusters. 

Membership functions of these fuzzy clusters are defined 
by the formula (13) for some value ]1,0( . So, these 

fuzzy clusters constitute an initial allotment for the 
tolerance threshold ]1,0(  and they can be considered 

as clustering components. 

If some allotment },,1|{)( )( ncclAXR l
z  
  

corresponds to the formulation of a concrete problem, then 
this allotment is an adequate allotment. If condition 

( )
1

( ) ( ), ( ),

(0,1], ( ( )) ,

c
l l

z
l

z

card A card X A R X

card R X c


 




  

 


 (16) 

and condition 

( ) ( )( ) , , ,

, (0,1],

l m l mcard A A w A A

l m

   



  

 
 (17) 

are met for all fuzzy clusters lA )( , cl ,1  of some 

allotment },,1|{)( )( ncclAXR l
z  
  then the 

allotment is the allotment among particularly separate 
fuzzy clusters and nw 0  is the maximum number of 
elements in the intersection area of different fuzzy 
clusters. Obviously, if 0w  in conditions (16) and (17) 
then the intersection area of any pair of different fuzzy 
cluster is an empty set and fuzzy clusters are fully separate 
fuzzy clusters.  

Several adequate allotments can exist. Thus, the 
problem consists in the selection of the unique adequate 

allotment )(XR  from the set B  of adequate allotments, 

)}({ XRB z
 , which is the class of possible solutions of 

the concrete classification problem and )}({ XRB z
  

depends on the parameters the classification problem. The 

selection of the unique adequate allotment )(XR  from 

the set )}({ XRB z
  of adequate allotments must be 

made on the basis of evaluation of allotments. The 
criterion 

 
 


c

l

n

i
li

l
z c

n
XRF

l

1 1

1
)),((  , (18) 

where c  is the number of  fuzzy clusters in  the  allotment 

)(XRz
  and )( l

l Acardn  , )()( XRA z
l 
   is the number 

of elements in the support of the fuzzy cluster lA )( , can 

be used for evaluation of allotments. 
Maximum of criterion (18) corresponds to the best 

allotment of objects among c  fuzzy clusters. So, the 
classification problem can be characterized formally as 

determination of the solution )(XR  satisfying 

)),((maxarg)(
)(




XRFXR z
BXRz 

  , (19) 

where )}({ XRB z
  is the set of adequate allotments 

corresponding to the formulation of clustering problem.  
The condition (19) must be met for the some unique 

allotment BXRz )( . Otherwise, the number c  of fuzzy 

clusters in the allotment sought )(XR  is suboptimal. 

Detection of fixed c  number of particularly separate 
fuzzy clusters can be considered as the aim of 
classification. A general plan of the relational D-AFC(c)-
algorithm is given, for example, in [6], [7] and [9]. The 

allotment },1|{)( )( clAXR l
z  
  among the given 

number c  of fuzzy clusters and the corresponding value 
of tolerance threshold ]1,0(  are the results of 

classification obtained from the D-AFC(c)-algorithm.  
From other hand, detection of the unique allotment 

)(XR  among unknown number с  of fully separated 

fuzzy clusters is the matter of the prototype-based D-
AFC-TC-algorithm. The transitive closure T


 of some 

usual fuzzy tolerance T  is constructed according to 
formulae (7) – (10). The fuzzy relation T


 is possesses 

properties (4), (5) and (6). The transitive closure is used in 
the clustering procedure and an idea of a leap in ordered 
sequence 10 0  Z    of the tolerance 

threshold values for finding of the appropriate value   

are the basis of the algorithm. The matrix of attributes 
]ˆ[ˆ 1

1

t
imn xX   is the matrix of initial data and some distance 

),( ji xxd  for fuzzy sets [12] is a parameter for the D-

AFC-TC-algorithm. A plan of the D-AFC-TC-algorithm is 

presented in [8]. The allotment )(XR  among the 

unknown number c  of fully separated fuzzy clusters, the 
corresponding value of tolerance threshold   and 

normalized coordinates of prototypes l  of fuzzy clusters 

)()( XRAl 


, cl ,,1   are results of classification. 

2.2. A validity measure 

Let )(XRc
  be the allotment which is corresponds to 

the result of classification for the given number c  of 
fuzzy clusters, },,2{ nc  . The quadratic measure of 

fuzziness of the allotment was defined in [13] as follows:  


















)(
)()(

)(

),(
2

));((
XRA

ll
E

l

cQMF
с

l

AAd
n

cXRV


 , (20) 
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where )( l
l Acardn  , )()( XRA с

l   and ),( )()(
ll

E AAd   

is the Euclidean distance 

2

1

2
)()( ))((),(

)( 







 

 l
i

l

Ax
iAli

ll
E xAAd




 , (21) 

between the fuzzy cluster lA )(  and the crisp set lA )(  

nearest to the fuzzy cluster lA )( . The membership 

function of the crisp set lA )(  in the equation (21) can be 

defined as 
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where )( )(
ll ASuppA    and ]1,0( . Using the validity 

quadratic measure (20) the optimal number of fuzzy 
clusters can be obtained by maximizing the index value. 

2.3. Notes on the data preprocessing 

The D-AFC(c)-algorithm can be applied directly to the 
data given as a matrix of fuzzy tolerance 

)],([ jiT xxT  , nji ,,1,  . This means that it can be 

used with the objects by attributes data by choosing a 
suitable metric to measure similarity. The three-way data 
can be normalized as follows [9]: 
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So, each object ix , ni ,,1  from the initial set 

},,{ 1 nxxX   can be considered as a type-two fuzzy set 

and )( )()( 2121 tt
x

tt
i xx

i
 , ni ,,1 ; 11 ,,1 mt  , 

22 ,,1 mt  , ]1,0[)( 2

1

21 )(  t
t

tt xx  , 11 ,,1 mt  , 

22 ,,1 mt   are its membership functions. In the case of 

three-way data each object ix , ni ,,1  can be 

presented as a matrix ][ )(
)(

21

21

tt
immi xX  , 11 ,,1 mt  , 

22 ,,1 mt  .  

Dissimilarity coefficients between the objects can be 
constructed on a basis of generalizations of distances 
between fuzzy sets [9] and these generalizations are taken 
into account dissimilarities between objects attributes as 
well as attributes situations. In particular, a generalization 
of the squared normalized Euclidean distance for type-two 
fuzzy sets is described by the expression 
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for all nji ,,1,  . In the case 12 m , the formula (24) 

will be rewritten as the usual squared normalized  
 

Euclidean distance [12]: 
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The matrix of fuzzy tolerance )],([ jiT xxT  , 

nji ,,1,   can be obtained after application of 

complement operation 

),(1),( jiIjiT xxxx   , nji ,,1,  , (26) 

to the matrix of fuzzy intolerance )],([ jiI xxI  . 

From other hand, in the case of the interval-valued 
data 22 m  and max}{min,2 t . Thus, each object ix , 

ni ,,1  can be considered as an interval-valued fuzzy 

set and )](),([)( (max)(min) 111 t
x

t
x

t
x xxx

iii
  , ni ,,1 , 

mt ,,1  is its membership function, where 

]1,0[)( (min)1 t
x x

i
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x x
i

 . So, the formula 

(24) can be rewritten as follows:  
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for all nji ,,1,  . 

Different distances and similarity measures for 
interval-valued fuzzy sets were proposed in other 
publications [14], [15]. For example, a similarity measure 
was defined by Ju and Yuan in [14] as follows:  
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for all nji ,,1,   and  1 . 

From other hand, the normalized Euclidean distance 
between interval-valued fuzzy sets based on Hausdorff 
metric was defined by Grzegorzewski in [15] as follows:  
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for all nji ,,1,  . 

3. THE PROPOSED METHOD 

A procedure for constructing the set of values of most 
possible number of fuzzy clusters in some sought structure 
is described in the first subsection. The second subsection 
includes the technique of constructing the stable clustering 
structure. 
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3.1. Constructing the set of values of the most possible 
number of fuzzy clusters 

Let us remember the concept of fuzzy number which is 
useful for constructing the set of values of most possible 
number of fuzzy clusters [16].  

Let L  or R  be decreasing, shape functions from   
to ]1,0[  with 1)0( L  and 0u , 1)( uL , 1u , 

0)( uL ; 0)1( L  or 0)( uL , u  and 0)( L . 

Then a fuzzy set V  is called a LR-type fuzzy number 

LRbamV ),,(  with 0a , 0b  if a membership 

function )(uV  of V  is defined as  
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where m  is called the mean value of V  and a  and b  are 
called the left and right spreads. In LR-type fuzzy 
numbers, the triangular and Gaussian fuzzy numbers are 
most commonly used. 

The concept of S-norm is also important for the 
consideration. If A  and B  are fuzzy sets in a universe U  
and )(uA , )(uB  their membership functions, then the 

fuzzy union С  of A  and B  has the membership function 
))(),((S)( uuu BAC   . Thus, an S-norm is sometimes 

called a fuzzy union. Depending on the choice of an S-
norm, we obtain different fuzzy unions. For example, the 
most widely used S-norms are [16]: 

 Maximum operation: 

))(),(max())(),((S1 uuuu BABA   , (31) 

 Probabilistic sum: 

)()()()())(),((S2 uuuuuu BABABA   , (32) 

 Bounded sum:  

))()(,1min())(),((S3 gBgAgBgA uuuu   . (33) 

There is a five-step procedure for constructing the set 
of values of most possible number of fuzzy clusters: 
1. The set of 2m  matrices ][ 12

1

t
i

t
mn xX   can be 

constructed after normalizing the initial data matrix 

]ˆ[ˆ )( 21

21

tt
immn xX   and each matrix should be 

processed by the D-AFC-TC-algorithm choosing a 

suitable distance ),( ji xxd ; the number )( 2tc  of fully 

separated fuzzy clusters in the allotment )( 2tXR  and 

the corresponding value of tolerance threshold )( 2t  
are main results of classification and the results can be 

described by two sets }ˆ,,1ˆ|{
~

22
)ˆ( 2 mtсС t   and 

}ˆ,,1ˆ|{
~

22
)ˆ( 2 mtt    where 22ˆ1 mm  ; 

2. Construct the LR-type fuzzy number 

LR
tttt bamV ),,( )ˆ()ˆ()ˆ()ˆ( 2222   for every value Сс t ~)ˆ( 2   as 

follows: )ˆ()ˆ( 22 tt сm  , 1)ˆ()ˆ( 22  tt ma , )ˆ()ˆ( 22 tt mnb   

and membership functions of fuzzy numbers )ˆ( 2tV , 

}ˆ,,1{ˆ
22 mt   are defined by expression (30) where 

),1( nu  and 0)()1( )2ˆ()2ˆ(  ntt VV
 ; 

3. Construct the fuzzy set )}ˆ(,ˆ{ˆ
)2ˆ(

2

ˆ
)ˆ(

gVg
t ccV t  from 

each LR-type fuzzy number )ˆ( 2tV , }ˆ,,1{ˆ
22 mt   as 

follows: a subset of integer values }ˆ,,ˆ{ˆ
*

 ccC   

where 2ˆ c  and 1ˆ  nc  should be extracted from 

the continuum ),1( n  and the value of the membership 

degree )ˆ()2ˆ(ˆ gV
ct , Сcg

ˆˆ   of each fuzzy set )ˆ( 2ˆ tV  is 

equal to the membership function value )()2ˆ̂( utV
  of 

corresponding fuzzy number )ˆ( 2tV  in the case gcu ˆ ; 

4. Construct the fuzzy union ))ˆ((S )2ˆ(

2
ˆˆ gVt

cD t  of all 

fuzzy sets )}ˆ(,ˆ{ˆ
)2ˆ(

2
ˆ

)ˆ(
gVg

t ccV t , Сcg
ˆˆ  , 

22 ˆ,,1ˆ mt   with its membership function )ˆ(
2ˆ
S gc
t

  

according to a selected S-norm; 
5. Construct the  -level fuzzy set for the fuzzy set D  as 

follows:  ))ˆ()ˆ(,(
)ˆ()ˆ( gDgDg ccDcD 

  , where 

}ˆ)ˆ(|ˆˆ{ˆ   gDg cCcD  and )ˆ(

ˆ
2

2

minˆ t

t
  . 

So, the set )( )ˆ(ˆ  DSuppD   is the set of values of 

most possible number of fuzzy clusters in some sought 
clustering structure. The membership function )ˆ(

)ˆ( gD c


  

can be interpreted as a possibility distribution   [16] and 
possibility degrees )ˆ( gс  express the extent to which the 

number ̂Dсg   of fuzzy clusters is plausible. 

3.2. Constructing the stable clustering structure  

A technique of constructing the stable clustering 
structure for the uncertain data set can be considered as a 
two-step process, where the set ̂D  of values of most 

possible number of fuzzy clusters is a preliminary result of 

classification. The allotment )(XR  among a priori 

unknown number of fuzzy clusters can be considered as 
the sought clustering structure. So, the technique of 
constructing the allotment among fuzzy clusters for the 
uncertain data set can be summarized as follows: 
1. The initial data are contained in the poly-matrix of 

attributes ]ˆ[ˆ )( 21

21

tt
immn xX  , ni ,,1 , 11 ,,1 mt  , 

22 ,,1 mt   and the procedure of constructing the set 

̂D  of values of most possible number of fuzzy 

clusters should be applied to the data set; 

2. The matrix of tolerance coefficients )],([ jiT xxT  , 

nji ,,1,   can be constructed from the normalized 

initial data by choosing a suitable distance for type-
two or interval-valued fuzzy sets; 

3. The D-AFC(c)-algorithm using some cluster validity 
index can be applied directly to the matrix of tolerance 
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coefficients for the set ̂D  and the allotment )(XR  

is the final result of the classification process. 
 
The proposed technique can be generalized for a case 

of the fuzzy c -partition (1) very simply. An application of 
the proposed technique to classification problem will be 
illustrated on the interval-valued data example in the next 
section. 

4. AN ILLUSTRATIVE EXAMPLE 

The Ichino and Yaguchi’s interval-valued oil data set 
is described in the first subsection and results of the data 
processing are presented in the second subsection. 

4.1. The oil data set 

Let us consider the set of interval-valued data [11] 
which is presented in Table 1. The data set consists of the 
specific gravity, iodine value, and saponification value 
measured for 8 types of oils.  

Table 1  The Ichino and Yaguchi’s oil data set 

Oils Specific 
gravity 

Iodine 
value 

Saponification 
value 

Linseed  
oil 

0.930-
0.935 

170-204 118-196 

Perilla  
oil 

0.930-
0.935 

192-208 188-197 

Cottonseed 
oil 

0.916-
0.918 

99-113 189-198 

Sesame  
oil 

0.920-
0.926 

104-116 187-193 

Camellia  
oil 

0.916-
0.917 

80-82 189-193 

Olive  
oil 

0.914-
0.919 

79-90 187-196 

Beef 
tallow 

0.860-
0.870 

40-48 190-199 

Hog  
fat 

0.858-
0.864 

53-77 190-202 

 
The analysis of types of oils in Table 1 highlights that 

the first six oils are vegetable and the remaining two are 
animal. That is why we expect to find two clusters in this 
data set. 

4.2. Experimental results  

The data matrix ]ˆ[ˆ )(
238

21 tt
ixX  , max}{min,2 t  was 

normalized according to formula (23). The procedure for 
constructing the set of values of most possible number of 
fuzzy clusters was applied to the normalized data using 
the squared normalized Euclidean distance (25) for the D-
AFC-TC-algorithm and the maximum operation (31) as 
the fuzzy union. So, the set of values of most possible 

number of fuzzy clusters in the sought allotment )(XR  

is }4,,2{ˆ D  and corresponding possibility degrees 

are shown in Fig. 1. 

 

Fig. 1  Possibility degrees constructed according to the 
maximum operation 

The set ̂D  and possibility degrees )ˆ( gс  depend on 

the kind of fuzzy union. If the probabilistic sum (32) or 
the bounded sum (33) are selected as the fuzzy union then 
the set of values of most possible number of fuzzy clusters 
is }5,,2{ˆ D . By executing the D-AFC(c)-algorithm 

for }4,,2{ˆ ˆ  Dсg  using the formula (27) in the 

process of the initial data preprocessing and the quadratic 
measure of fuzziness of the allotment (20) in the process 
of the classification performance, we obtain that the actual 
number of fuzzy clusters is equal 2 and the number 
corresponds to the maximum of the quadratic measure of 
fuzziness of the allotment (20). The performance of the 
validity measure is shown in Fig. 2. 

 

Fig. 2  Plot of the quadratic measure of fuzziness of the 
allotment as a function of the number of clusters using the 

formula (27) 

Membership functions of two classes of the allotment 

)(XR  are presented in Fig. 3.  

 

Fig. 3  Membership functions of two classes obtained from the 
D-AFC(c)-algorithm using the formula (27) 
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The allotment )(XR  among two fully separated 

fuzzy clusters was obtained for the tolerance threshold 
0.8184 . The first class is formed by 5 elements and 

the second class includes 3 elements. So, the fifth element 
is the misclassified object. Membership values of the first 
class are represented in Fig. 3 by ○, membership values of 
the second class are represented by ■ and values which 
equal zero are not shown in the figure. 

By executing the D-AFC(c)-algorithm for 
}4,,2{ˆ ˆ  Dсg  using the Ju and Yuan’s similarity 

measure (28) for 2  and the validity measure (20), we 
obtain that numbers 3c  and 4c  of fuzzy clusters in 

the allotment sought )(XR  are suboptimal. Thus, the 

allotment )(XR  among two fully separated fuzzy 

clusters was obtained for the tolerance threshold 
0.5852 . Membership functions of two classes of the 

allotment are presented in Fig. 4.  

 

Fig. 4  Membership functions of two classes obtained from the 
D-AFC(c)-algorithm using the formula (28) 

The first class is formed by 6 elements and the second 
class includes 2 elements. So, misclassified objects are 

absent at the resulting allotment )(XR . 

By executing the D-AFC(c)-algorithm using the 
distance (29) and the validity measure (20), we obtain that 
the number 4c  of fuzzy clusters in the allotment sought 

)(XR  is suboptimal and the actual number of fuzzy 

clusters is equal 2. The performance of the validity 
measure is shown in Fig. 5. 

 

Fig. 5  Plot of the quadratic measure of fuzziness of the 
allotment as a function of the number of clusters using the 

formula (29) 

Membership functions of two classes of the allotment 
are presented in Fig. 6, where membership values of the 
first class are represented by ○, membership values of the 
second class are represented by ■ and values which equal 
zero are not shown in the figure. 

 

Fig. 6  Membership functions of two classes obtained from the 
D-AFC(c)-algorithm using the formula (29) 

The first class is formed by 1 elements and the second 
class includes 7 elements. So, five misclassifications are 

presented in the resulting allotment )(XR .  

In order to compare the presented results with the 
results obtained from the relational ARCA-algorithm of 
fuzzy clustering [3], we observed that the minimal value 
of the compactness and separation index [4] corresponds 
to the three fuzzy clusters and the maximal value of the 
partition coefficient [1] corresponds to the four fuzzy 
clusters in the fuzzy c -partition. So, presented results of 
the proposed technique of constructing the stable 
clustering structure seem to be appropriate. 

5. FINAL REMARKS  

Preliminary conclusions are discussed in the first 
subsection of the section. The second subsection deals 
with the perspectives on future investigations.  

5.1. Conclusions  

The technique of constructing the stable clustering 
structure for the uncertain data set is proposed in the 
paper. The results of application of the proposed technique 
to the oil data set show that the technique is the effective 
tool for solving the classification problem under 
uncertainty of the initial data.  

Two heuristic algorithms of possibilistic clustering are 
the basis of the proposed technique. However, the results 
obtained from these algorithms depend on the selection of 
the dissimilarity measure and the initial data normalization 
method. Moreover, the set of values of most possible 
number of fuzzy clusters in the sought clustering structure 
depends on the type of the selected S-norm. So, we can 
conclude that the use of some one dissimilarity measure 
may produce serious hesitation. It will be a reasonable 
way to make use of various dissimilarity measures and 
compare the obtained clustering results.  

The allocation of objects among the a priori unknown 
number of fuzzy clusters, which is the result of application 
of the proposed technique to the initial uncertain data set, 
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is appropriate for any actual values of the measured 

quantities )( 21ˆ tt
ix  belongs either to the interval 

]ˆ,ˆ[ (max)(min) 11 t
i

t
i xx , max}{min,2 t  in the situation of 

interval uncertainty, or to the set 

)ˆ,,ˆ,,ˆ( )()()1( 21211 mt
i

tt
i

t
i xxx  , },,1{ 22 mt   in the case of 

the three-way data for all objects Xxi  , 11 ,,1 mt  . So, 

the obtained allotment )(XR  among a discovered 

number с  of fuzzy clusters can be considered as the stable 
clustering structure. 

5.2. Perspectives  

Firstly, possibility degrees for values of the most 
possible number of fuzzy clusters in some sought 
clustering structure can be taken into account in the 
classification process.  

Secondly, a method for deriving fuzzy classification 
rules from the interval-valued data was outlined in [17]. 
The method is based on heuristic possibilistic clustering 
the interval-valued data. So, the technique proposed here 
can be considered as a preliminary step in the method of 
constructing a base of fuzzy rules. 
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