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ABSTRACT
The problem of efficient computation of all second maximum path weights for a given square matrix A of dimension n

in max-plus algebra is solved by computing so-called double power sequence of a specific extension Ā of A. An algorithm
using this method is presented, by which the second maximum cycle mean value λ2(A) can be computed in O(n4) time.

Keywords: orbit period, max-plus algebra

1. INTRODUCTION

Matrix computations using binary operations of max-
imum and plus, in analogy to operation plus and times
known in classical linear algebra, are often involved in op-
timization problems, see [2–5, 11, 17]. Max-plus matri-
ces are important in the study of discrete events systems
(DES), see [3, 4, 11]. The steady states of DES correspond
to eigenvectors of max-plus matrices, and the periodical
behavior of DES is reflected by so-called linear periodic-
ity of the power sequence of the transient max-plus matrix,
see [6, 7, 14, 15]. The eigenvalues of max-plus matrices are
closely connected with the maximum (or dually: minimum)
cycle mean, see [10, 12]. It has been shown in [13, 16] that
the linear pre-period of a max-plus matrix can be arbitrary
long, regardless of the matrix dimension. For the estima-
tion of the linear pre-period length of a given matrix, the
values of the maximum cycle mean and the second maxi-
mum cycle mean in the associated digraph are important,
see [8, 9].

Closely related question of efficient computation of all
second maximum path weights for a given square matrix
A of dimension n in max-plus algebra is considered in this
paper. The main tool for solving the problem are so-called
double matrices and their multiplication. An algorithm for
computing the second maximum cycle mean value λ2(A)
in O(n4) time is described in the last section. Similar prob-
lems using different approach were considered in [1, 5].

2. NOTIONS AND NOTATION

By max-plus algebra we understand the set R∗ of all real
numbers with added element ε =−∞, together with binary
operation of maximum denoted as ⊕, and the operation of
addition denoted as⊗ (clearly, the element−∞ is absorbing
in respect to the operation ⊗). We remark that the results
in this paper remain valid in more general situation, when
R∗ is substituted by arbitrary linearly ordered commutative
and divisible group G? in additive notation, with the least
element absorbing in respect to the group operation. Then
⊕ and ⊗ are the operation of maximum and the group op-
eration on G?, respectively.

For a fixed natural number n we denote N =
{1,2, . . . ,n}. The set of all n× n matrices (n-dimensional

vectors) over R∗ is denoted by R∗(n,n) (R∗(n)). Matrix
operations over R∗ are performed with respect to opera-
tions ⊕,⊗ formally in the same way as matrix operations
over any field. Thus for A, B ∈ R∗(m,n) we define the sum
A⊕B =C ∈R∗(m,n), with ci j = ai j⊕bi j, for all i ∈M and
j ∈ N. Further for A ∈ R∗(m,r) and B ∈ R∗(r,n) we de-
fine the product A⊗B = C ∈ R∗(m,n) with ∑

k

⊕aik ⊗ bk j,

for all i ∈ M and j ∈ N. A digraph G = G (A) is asso-
ciated to every matrix A ∈ R∗(n,n), with the vertex set
V (G ) = N and with the edge set E(G ) = {(i, j);ai j 6= ε}.
The edges in G (A) are evaluated by the weight function
w defined by the formula w(i, j) = ai j, and the weight
w(p) of a path p = (p0, p1, . . . , pr) of length |p| = r in
G (A) is defined as the sum of all weights w(pi−1, pi) for
i = 1,2, . . . ,r. The weight mean w(p) is computed by the
formula w(p) = w(p)/r, for paths of positive length.

It has been proved in [4] that the maximum weight of all
paths connecting node i with node j of a given length r for
a matrix A in max-plus algebra can be found by computing
the rth formal power A(r) of the matrix A as illustrated in the
following example.

Example 2.1 Input matrix A ∈ R∗(n,n), with n = 5,

A =


ε 1 ε ε ε

ε ε 2 ε ε

3 ε ε 2 4
ε ε 0 ε ε

ε ε 0 ε ε



and the corresponding digraph G (A)
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For instance, if we are interested in finding the maxi-
mum weight of a path of length r = 3 from the node i = 2
to the node j = 3, then the maximum weight is represented
by the element a(3)23 = 6 in A(3),

A(3) =


6 ε ε 5 7
ε 6 6 ε ε

7 ε 6 6 8
ε 4 4 ε ε

ε 4 4 ε ε

 .

It can be easily seen in this simple example that the cor-
responding path with the maximum weight is the path
(2,3,5,3) (marked in digraph G (A) below by printing the
arcs of the path and their weights in bold).
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Similarly, we can easily see that the path of length r = 3
from the node i = 2 to the node j = 3 with the second max-
imum weight is the path (2,3,4,3). Now a natural ques-
tion arises: how can be the second maximum weight of all
paths of a given length connecting a given node with an-
other given node computed in general situation? The sec-
ond maximum cycle mean (as well as the maximum cycle
mean) is, namely, one of the tools to estimate the length of
the non-periodic parth (the so-called pre-period) of a linear
periodic matrix in max-plus algebra.

3. DOUBLE MATRIX

To answer the question put at the end of the previous
paragraph, we start with extending the operation of finding
the maximum element of a subset of R∗ to finding the two
largest values.

Definition 3.1 Let S ⊆ R∗ be a finite set. We define
max2S = (s1,s2) by setting s1 = maxS and s2 = max(S \
{s1}).

Lemma 3.1 Let be S⊆R∗, max2S = (s1,s2). Then the fol-
lowing statements hold true

(i) if S = /0, or if S = {ε}, then s1 = s2 = ε ,

(ii) if S = {a}, a > ε , or if S = {a, ε}, a > ε , then s1 = a,
s2 = ε ,

(iii) if there are a,b ∈ S,a > b > ε , then s1 > s2 > ε .

Proof. All statements in the lemma follow directly from
Definition 3.1 and from the fact that maximum of the empty
subset in R∗ is ε (i.e. the least element in R∗).
�

Main tool for computing the second maximum cycle
mean value λ2(A) of a given square matrix over max-plus
algebra is the notion of double matrix with a special op-
eration of double matrix multiplication introduced in this
section.

Definition 3.2 An ordered pair of matrices Ā =
(

1A,2A
)

is
called a double matrix (of dimension n), if 1A,2A ∈R∗(n,n)
and if 1ai j >

2ai j, or 1ai j =
2ai j = ε , holds true for any

i, j ∈ N. 1A is the left-hand matrix of A and 2A is the right-
hand matrix of Ā. The set of all double matrices of a fixed
dimension n is denoted as D(n,n). The double max-plus
product Ā⊗̄ B̄ = C̄ =

(
1C,2C

)
is defined for any two matri-

ces Ā =
(

1A,2A
)
, B̄ =

(
1B,2B

)
∈D(n,n) by putting

Si j
(
Ā, B̄

)
=
{1aik +

1bk j,
1aik +

2bk j,
2aik +

1bk j; k ∈ N
}
(3.1)

and(1ci j,
2ci j
)
= max2Si j

(
Ā, B̄

)
(3.2)

for any i, j ∈ N.

The double max-plus multiplication of two double ma-
trices results in a double matrix, as illustrated in the next
example and proved in the following lemma.

Example 3.1 Let Ā, B̄ ∈D(2,2).

Ā =

[
1 2 0 ε

ε 0 ε −2

]
, B̄ =

[
3 2 1 −1
1 ε 0 ε

]
.

Let us find the double product of the given matrices
Ā⊗̄ B̄ = C̄. Using formulas (3.1) and (3.2) from Defini-
tion 3.2 the elements of the resulting matrix C̄ can be com-
puted.

S11
(
Ā, B̄

)
=
{1a1k +

1bk1,
1a1k +

2bk1,
2a1k +

1bk1;

k = 1,2
}
= {4,3,2,ε} ,(1c11,

2c11
)
=max2S11

(
Ā, B̄

)
= (4,3),

S12
(
Ā, B̄

)
=
{1a1k +

1bk2,
1a1k +

2bk2,
2a1k +

1bk2;

k = 1,2
}
= {3,2,0,ε} ,(1c12,

2c12
)
=max2S12

(
Ā, B̄

)
= (3,2),

S21
(
Ā, B̄

)
=
{1a2k +

1bk1,
1a2k +

2bk1,
2a2k +

1bk1;

k = 1,2
}
= {1,0,−1,ε} ,(1c21,

2c21
)
=max2S12

(
Ā, B̄

)
= (1,0),

ISSN 1335-8243 (print) c© 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:19 AM



Acta Electrotechnica et Informatica, Vol. 11, No. 3, 2011 53

S22
(
Ā, B̄

)
=
{1a2k +

1bk2,
1a2k +

2bk2,
2a2k +

1bk2;

k = 1,2
}
= {ε} ,(1c22,

2c22
)
=max2S22

(
Ā, B̄

)
= (ε,ε).

Thus

C̄ =

[
4 3 3 2
1 ε 0 ε

]
.

Lemma 3.2 The set D(n,n) is closed under the double
max-plus multiplication ⊗̄ .

Proof. Let Ā, B̄ ∈ D(n,n). We shall show that the product
C̄ = Ā⊗̄ B̄ belongs to D(n,n). It is necessary to show that
for any i, j ∈ N, the condition 1ci j >

2ci j, or 1ci j =
2ci j = ε

holds true. The condition follows immediately from the
statements of Lemma 3.1, if we put S = Si j(Ā, B̄), s1 =

1ci j
and s2 =

2ci j.
�

Double powers of a double matrix Ā ∈ D(n,n) are de-
fined by recursion

Ā(1) = Ā,

Ā(r+1) = Ā(r) ⊗̄ Ā, for r = 1,2, . . .

The equations (3.1) and (3.2) from Definition 3.2 turn
for any i, j ∈ N to

Si j

(
Ā(r), Ā

)
=
{

1a
(r)
ik + 1ak j,

1a
(r)
ik + 2ak j,

2a
(r)
ik + 1ak j; k ∈ N

}
(3.3)

and(
1a

(r+1)
i j ,2a

(r+1)
i j

)
= max2Si j

(
Ā(r), Ā

)
, (3.4)

for r = 1,2, . . . .

4. MATRIX EXTENSION

The matrix extension of a matrix A to a double matrix
Ā is introduced in this section. An interpretation of the se-
quence of double powers of the matrix extension Ā of a
given matrix A is described.

Any matrix A ∈ R∗(n,n) can be formally extended to a
double matrix Ā = (1A,2A) ∈D(n,n) by setting 1A = A and
2A = E with all input values in E equal to ε . Clearly, the
condition 1ai j >

2ai j, or 1ai j =
2ai j = ε , is fulfilled for any

i, j ∈ N.
In the computation of the sequence of double powers

of a matrix extension we can use the fact that the right-
hand matrix of the matrix extension Ā consists of the values
2ak j = ε . Hence, for matrix extensions the computation can
be simplified, in comparison with the definition above, as
follows:

Si j

(
Ā(r), Ā

)
=
{

1a
(r)
ik + 1ak j,

2a
(r)
ik + 1ak j; k ∈ N

}
(4.1)

and(
1a

(r+1)
i j ,2a

(r+1)
i j

)
= max2Si j

(
Ā(r), Ā

)
, (4.2)

for r = 1,2, . . . .

Example 4.1 Input matrix A ∈ R∗(n,n), with n = 5,

A =


ε 1 ε ε ε

ε ε 2 ε ε

3 ε ε 2 4
ε ε 0 ε ε

ε ε 0 ε ε

 .
Let us find the power sequence of length 5 of the extension
Ā of the given matrix

Ā =


ε 1 ε ε ε ε ε ε ε ε

ε ε 2 ε ε ε ε ε ε ε

3 ε ε 2 4 ε ε ε ε ε

ε ε 0 ε ε ε ε ε ε ε

ε ε 0 ε ε ε ε ε ε ε

 .
The successive powers of Ā will be computed according to
(4.1) and (4.2).

For r = 1

Ā(2) = Ā(1) ⊗̄ Ā = Ā⊗̄ Ā,

Si j
(
Ā, Ā

)
=
{1aik +

1ak j,
2aik +

1ak j; k = 1,2, . . . ,5
}
,(

1a
(2)
i j ,2a

(2)
i j

)
= max2Si j

(
Ā, Ā

)
,

Ā(2) =


ε ε 3 ε ε ε ε ε ε ε

5 ε ε 4 6 ε ε ε ε ε

ε 4 4 ε ε ε ε 2 ε ε

3 ε ε 2 4 ε ε ε ε ε

3 ε ε 2 4 ε ε ε ε ε

 .
For r = 2

Ā(3) = Ā(2) ⊗̄ Ā,

Si j

(
Ā(2), Ā

)
=
{

1a
(2)
ik + 1ak j,

2a
(2)
ik + 1ak j; k = 1,2, . . . ,5

}
,(

1a
(3)
i j ,2a

(3)
i j

)
= max2Si j

(
Ā(2), Ā

)
,

Ā(3) =


6 ε ε 5 7 ε ε ε ε ε

ε 6 6 ε ε ε ε 4 ε ε

7 ε 6 6 8 5 ε ε 4 6
ε 4 4 ε ε ε ε 2 ε ε

ε 4 4 ε ε ε ε 2 ε ε

 .
For r = 3

Ā(4) = Ā(3) ⊗̄ Ā,

Si j

(
Ā(3), Ā

)
=
{

1a
(3)
ik + 1ak j,

2a
(3)
ik + 1ak j; k = 1,2, . . . ,5

}
,(

1a
(4)
i j ,2a

(4)
i j

)
= max2Si j

(
Ā(3), Ā

)
,

Ā(4) =


ε 7 7 ε ε ε ε 5 ε ε

9 ε 8 8 10 7 ε ε 6 8
9 8 8 8 10 ε 6 6 ε ε

7 ε 6 6 8 5 ε ε 4 6
7 ε 6 6 8 5 ε ε 4 6

.
For r = 4

Ā(5) = Ā(4) ⊗̄ Ā,

Si j

(
Ā(4), Ā

)
=
{

1a
(4)
ik + 1ak j,

2a
(4)
ik + 1ak j; k = 1,2, . . . ,5

}
,(

1a
(5)
i j ,2a

(5)
i j

)
= max2Si j

(
Ā(4), Ā

)
,
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Ā(5) =


10 ε 9 9 11 8 ε ε 7 9
11 10 10 10 12 ε 8 8 ε ε

11 10 10 10 12 9 ε 8 8 10
9 8 8 8 10 ε 6 6 ε ε

9 8 8 8 10 ε 6 6 ε ε

 .
Next theorem describes the properties of the sequence

of double powers of the extension Ā of a matrix A.

Theorem 4.1 Let double matrix Ā ∈ D(n,n) be the exten-
sion of A ∈ R∗(n,n). Then the sequence of double pow-

ers Ā(r) =
(

1A(r)
,2A(r)

)
, r = 1,2, . . . satisfies the following

statements for any i, j ∈ N

(i) 1a(r)i j = a(r)i j is the maximum weight of all paths in
G (A) from i to j, of length r,

(ii) if 1a(r)i j > ε and 2a(r)i j > ε , then 2a(r)i j is the second max-
imum weight of all paths in G (A) from i to j, of length
r,

(iii) if 1a(r)i j > ε and 2a(r)i j = ε , then there is no path in

G (A) from i to j, with weight less than 1a(r)i j = a(r)i j , of
length r,

(iv) if 1a(r)i j = ε , then 2a(r)i j = ε and there is no path in
G (A) from i to j, of length r.

Proof. The proof proceeds on recursion with respect to
r. For r = 1 and for any i, j ∈ N there is exactly one path of
length 1 from i to j in digraph G (A), if ai j > ε , and there
is no such path, if ai j = ε . In the first case, the unique path
consists of the single arc (i, j) and its weight is ai j, which is
the maximum weight, while the second maximum weight
is ε (maximum of the empty set). In the second case, when
there is no arc from i to j in G (A), both the maximum and
the second maximum weight are equal to ε . Notice that
2ai j = ε by the definition of formal extension Ā, for all i, j.

Thus the assuption 2a(r)i j > ε in statement (ii) is not fulfilled,
for any i, j if r = 1.

Let us assume by recursion, that the statements (i), (ii),
(iii) and (iv) are satisfied for some fixed value r. We shall
prove that the statements are fulfilled also when r is re-
placed by r+1.

(i) By the recursion assumption and by the definition of
formal extension Ā, the equalities 1a(r)ik = a(r)ik , 1ak j = ak j
hold true for every k ∈ N. Therefore,

1a
(r+1)
i j = max

{
1a

(r)
ik + 1ak j,

2a
(r)
ik + 1ak j; k ∈ N

}
=

= max
{

1a
(r)
ik + 1ak j; k ∈ N

}
=

= max
{

a(r)ik +ak j; k ∈ N
}
= a(r+1)

i j .

By the well-known properties of matrix powers in max-plus
algebra, a(r+1)

i j is the maximum weight of a path in G (A)
from i to j, of length r+1.

(ii) Let us suppose that 1a(r+1)
i j > ε . In view of the com-

putation in the previous part of the proof, there is a non-
empty set K ⊆ N such that 1a(r+1)

i j = 1a(r)ik + 1ak j for every

k ∈K and 1a(r+1)
i j > 1a(r)ik + 1ak j for all k ∈N \K. Therefore,

2a
(r+1)
i j = max

({
2a

(r)
ik + 1ak j; k ∈ K

}
∪

∪
{

1a
(r)
ik + 1ak j,

2a
(r)
ik + 1ak j; k ∈ N \K

})
.

Using the definition of Ā, we have 1ak j = ak j for all k ∈ N,
hence we get

2a
(r+1)
i j = max

({
2a

(r)
ik +ak j; k ∈ K

}
∪

∪
{

1a
(r)
ik +ak j,

2a
(r)
ik +ak j; k ∈ N \K

})
.

By recursion assumption (ii), we have 1a(r)ik ≥ 2a(r)ik , which
gives

2a
(r+1)
i j = max

({
2a

(r)
ik +ak j; k ∈ K

}
∪

∪
{

1a
(r)
ik +ak j; k ∈ N \K

})
. (4.3)

In view of the statement (i) proved above, the assumption
1a(r+1)

i j > ε implies a(r+1)
i j > ε , i.e. in G (A) there exists a

path from i to j, of length r+1, with the maximum weight
a(r+1)

i j . Let us consider a path p with the second maxi-
mum weight from i to j, of length r + 1 (if such a path
exists in G (A)). The path p consists of two shorter paths:
a sub-path p′ from node i to some node k ∈ N, of length
r, and an arc (k, j). Then w(p) = w(p′) + ak j. Clearly,
1a(r)ik ≥ w(p′)≥ 2a(r)ik . We shall consider two cases.

(a) If k ∈ K, then 1a(r)ik > w(p′) = 2a(r)ik and

w(p) = w(p′)+ak j =
2a(r)ik +ak j.

(b) If k ∈ N \K, then 1a(r)ik = w(p′) and

w(p) = w(p′)+ak j =
1a(r)ik +ak j.

According to equation (4.3), we get 2a(r+1)
i j ≥ w(p) in both

cases.
By assumption 2a(r+1)

i j > ε , there is k ∈ K such that
2a(r+1)

i j = 2a(r)ik + ak j > ε , or there is k ∈ N \K such that
2a(r+1)

i j = 1a(r)ik + ak j > ε . This implies, in view of the re-
cursion assumption, that there exists a path p from i to j, of
length r+1 in G (A), with 1a(r+1)

i j > w(p) = 2a(r+1)
i j . Hence

p has the second maximum weight and the statement (ii)
holds true for r+1.

(iii) The proof goes similarly as above, only by assump-
tion 2a(r+1)

i j = ε we get that there is no path p from i to j, of

length r+1 in G (A), with 1a(r+1)
i j > w(p).

(iv) The statement follows directly from Lemma 3.1.
�

Theorem 4.1 answers the question posed at the end of
Section 2: how to compute the second maximum weight
of all paths of a given length connecting a given node with
another given node in the digraph corresponding to a given
matrix? In the next example we will find the second max-
imum weight of all paths of length r = 3 connecting node
2 with node 3 in the digraph G (A) of the matrix A from
Example 2.1.

ISSN 1335-8243 (print) c© 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:19 AM



Acta Electrotechnica et Informatica, Vol. 11, No. 3, 2011 55

Example 4.2 Input matrix A ∈ R∗(n,n), with n = 5,

A =


ε 1 ε ε ε

ε ε 2 ε ε

3 ε ε 2 4
ε ε 0 ε ε

ε ε 0 ε ε

 .
According to Theorem 4.1 we shall use the third power

of the matrix extension of the given matrix. Since the con-
sidered matrix has been extended to a double matrix and
the mentioned power has already been computed in Exam-
ple 4.1, we can immediately find the answer. The second
maximum weight of all paths of length r = 3 connecting
node 2 with node 3 is represented by the element 2a(3)23 = 4
in the right-hand matrix of Ā(3).

Ā(3) =


6 ε ε 5 7 ε ε ε ε ε

ε 6 6 ε ε ε ε 4 ε ε

7 ε 6 6 8 5 ε ε 4 6
ε 4 4 ε ε ε ε 2 ε ε

ε 4 4 ε ε ε ε 2 ε ε

 .

The corresponding path with the second maximum
weight is the path (2,3,4,3) (marked in digraph G (A) be-
low by printing the arcs of the path and their weights in
bold).
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5. THE SECOND MAXIMUM CYCLE MEAN

The previous results will be used in this section for com-
puting the second maximum cycle mean value. In accor-
dance with the notation introduced in Section 2, the weight
w(c) of a cycle c in digraph G (A) is defined as the sum of
the weights of all arcs in c. If the length of c is positive,
then the ratio w̄(c) := w(c)/|c | is called the cycle mean.
The maximum cycle mean in G (A) is denoted by

λ (A) := max { w̄(c); c cycle in G (A)} .

Since the cycle mean of a cycle can not exceed the cycle
mean of its elementary subcycles, and since the number of
elementary cycles is finite, λ (A) always exists. If there is
no cycle of positive length, then λ (A) = ε .

When considering cycles of arbitrary length, we can
create combinations of cycles with the maximum cycle
mean λ (A) with cycles of lower cycle mean, and the cycle
mean value of such combinations can be made arbitrarily
close to λ (A). Hence, strictly speaking, the second max-
imum cycle mean value does not exist for cycles of unre-
stricted length. For that reason we restrict our investigation

to cycles in G (A) with lengths not exceeding the dimension
of the given square matrix A (which includes all elementary
cycles).

The second maximum cycle mean in G (A) is denoted by

λ2(A) :=max{w̄(c);c cycle in G (A), |c| ≤ n, w̄(c)<λ (A)} .

If there is no cycle of positive length with w̄(c) < λ (A),
then λ2(A) = ε .

Theorem 5.1 There is an algorithm which for every A ∈
R∗(n,n) computes the second maximum cycle mean value
λ2(A) in O(n4) time.

Proof. The algorithm consists of the following steps:
Step 1. For a given matrix A ∈ R∗(n,n) compute the

double matrix Ā = (1A,2A) ∈ D(n,n) by setting 1A = A and
2A = E (all inputs in E are ε).

Step 2. Compute the double powers Ā(1) = Ā, Ā(r) =(
1A(r)

,2A(r)
)

, for r = 2,3, . . .n.

Step 3. For every r = 1,2, . . . ,n compute the maximum
and the second maximum mean value for cycles of length r
in G (A) by formulas(

λ
(r)
1 (A),λ (r)

2 (A)
)
= max2

{
1a

(r)
ii /r, 2a

(r)
ii /r ; i ∈ N

}
.

Step 4. Compute the maximum mean value for cycles of
any length and the second maximum mean value for cycles
of length at most n in G (A)(
λ (A),λ2(A)

)
= max2

{
λ
(r)
1 (A), λ

(r)
2 (A); r = 1,2, . . . ,n

}
.

It is easy to verify that the computational complexity for
Step 1 is O(n2), for Step 2 the complexity is O(n4) and for
Steps 3, 4 again O(n2). Hence, the whole computation is
performed in O(n4) time. The correctness of the algorithm
follows from Lemma 3.1 and Theorem 4.1.
�

Below, the algorithm is demonstrated on the input ma-
trix A used in the previous examples.

Example 5.1 Input matrix A ∈ R∗(n,n), with n = 5,

A =


ε 1 ε ε ε

ε ε 2 ε ε

3 ε ε 2 4
ε ε 0 ε ε

ε ε 0 ε ε

 .
Let us compute the second maximum cycle mean value

of all cycles of length at most 5. In the first and the second
step of the algorithm the matrix extension Ā and the first five
consecutive powers of Ā should be computed. The results
of these computations can be found in Example 4.1, hence
we can pass directly to the third step of the algorithm and
compute the maximum and second maximum cycle mean
value for cycles of length r = 1,2, . . .5 using the formula(

λ
(r)
1 (A),λ (r)

2 (A)
)
= max2

{
1a

(r)
ii /r, 2a

(r)
ii /r ; i ∈ N

}
.
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Thus(
λ
(1)
1 (A),λ (1)

2 (A)
)
= max2 {ε } = (ε,ε) ,(

λ
(2)
1 (A),λ (2)

2 (A)
)
= max2 {2,1} = (2,1) ,(

λ
(3)
1 (A),λ (3)

2 (A)
)
= max2 {2} = (2,ε) ,(

λ
(4)
1 (A),λ (4)

2 (A)
)
= max2

{
2, 3

2

}
=
(
2, 3

2

)
,(

λ
(5)
1 (A),λ (5)

2 (A)
)
= max2

{
2, 8

5

}
=
(
2, 8

5

)
.

Finally, we compute the maximum cycle mean value of cy-
cles of any length and the second maximum cycle mean
value of cycles of length at most 5 in G (A) by formula

(λ (A),λ2(A)) = max2
{

λ
(r)
1 (A),λ (r)

2 (A); r = 1,2, . . . ,5
}
.

Thus

(λ (A),λ2(A)) = max2
{

ε,2,1,
3
2
,

8
5

}
=

(
2,

8
5

)
.
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