
32 Acta Electrotechnica et Informatica, Vol. 13, No. 4, 2013, 32–39, DOI: 10.15546/aeei-2013-0046

PERFORMANCE ANALYSIS OF A JAVA WEB APPLICATION RUNNING
ON AMAZON EC2

Gábor IMRE, Hassan CHARAF, László LENGYEL
Department of Automation and Applied Informatics, Faculty of Electrical Engineering and Informatics

Budapest University of Technology and Economics
Magyar tudósok krt. 2., Budapest H-1117, Hungary, email: gabor, hassan, lengyel@aut.bme.hu

ABSTRACT
More and more companies decide to deploy their new or existing applications at cloud computing providers. A

few of the most important forces driving this process are the scalability, business agility and mobility offered by the
cloud environments. A number of issues, however, tend to inhibit the adoption of cloud based systems, e.g. security,
compliance, vendor lock-in, or inconsistent performance. This paper focuses on the performance questions of a web
application implemented on Java platform, deployed at the servers of Amazon Web Services, which is considered one
of the dominant cloud providers currently. We present the results of a load testing that investigates the throughput and
response time of the application on two different types of instances (Micro and Small) with different computing power
and price. We quantify the effect on the user-perceived performance when choosing either of these instance types.

Keywords: cloud computing, performance analysis, load testing, web applications

1. INTRODUCTION

Cloud computing offers companies a completely dif-
ferent paradigm for operating their applications and IT
infrastructure as opposed to traditional server rental.
Upfront hardware and software costs can be avoided
thanks to the ”Pay-As-You-Go” principle of the cloud
providers. The computing capacity can be easily scaled
to extremely high levels according to the growing
needs. In the case of traditional server rental, over-
provisioning of the capacity is needed so that peek
loads can be handled without drastic drops of perfor-
mance that lead to dissatisfied users. In a cloud envi-
ronment, however, the costs of overprovisioning can be
avoided, since scaling down is also possible for periods
with lower client load.

Thanks to these advantages, several papers report
more and more extensive adoption of cloud comput-
ing. The survey of NorthBridge [1] states that 75%
of the responders think that they will develop soft-
ware using a Platform-as-a-Service [2] , which is a spe-
cific type of cloud computing, until 2017. According
to the forecast of Gartner [3] we can expect an an-
nual growth rate of 17.7% in the end-user spending on
public cloud services from 2011 through 2016. Also,
a survey among chief financial officers [4] shows that
54% of the responders think that half of their trans-
actions will be supported by Software-as-a-Service [2]
systems running on cloud infrastructure no later than
2015. Despite the enthusiasm, some worries and draw-
backs of cloud computing are known as well. In [5], the
authors list ten of these obstacles, including availabil-
ity, data lock-in, data confidentiality and auditability,
and unpredictability of performance.

Our paper focuses to the latter one, more specifi-
cally we investigate the performance of two different
server types in the Amazon Elastic Compute Cloud
(Amazon EC2) [6]. Amazon EC2 offers a wide variety
of server types (or instance types), each with different

CPU and IO capacity, memory size, etc. Naturally,
higher capacity comes with higher price. The cheap-
est instance type is the so called Micro instance, out
of which one instance can be used even for free for
one year. Amazon recommends this instance type for
websites with lower traffic.

Our previous work [7] investigated the performance
of a Micro instance in EC2, we tried to explore the
load levels that a Micro instance can serve with an ac-
ceptable performance. We examined different database
sizes and different levels of client load. We found, that
in most of the considered cases, the average response
times are less than 2 seconds with the Micro instance,
which can be deemed acceptable. With larger database
size and client load, however, the response time can
grow to ineligible large. Also, the response time can
be extremely high even at smaller spikes in the traffic.

In this paper, we extend our scope on EC2 Small
instances, whose computing capacity and cost differ
from that of Micro instances, as we describe in Sec-
tion 2. Small instances are still recommended for web-
sites with lower traffic. The main questions, we are
looking for the answers to in this paper are: how does a
Small instance perform compared to a Micro instance?
What is the effect on the response time of the applica-
tion if we choose a Small instance instead of a Micro
instance? How should we decide among them? An-
swering these questions is crucial if we want to optimize
the operating costs of our systems. For this reason, we
executed some load tests against an open source web
application, the Apache Roller [8] blog engine. The ap-
plication was once deployed on an Amazon EC2 Micro
instance, and once on a Small instance so that we can
compare the results.

The rest of the paper is organized as follows. The
necessary background information about the Amazon
EC2 platform, the characteristics of the investigated
server instances and the application under test is de-
scribed in Section 2. Section 3 contains the main con-

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 13, No. 4, 2013 33

tributions: the measurement methodology, the hard-
ware and software environment of the measurements;
the results of the measurements are presented and dis-
cussed here, as well. Section 4 summarizes related
work. Finally, we draw conclusions in Section 5.

2. BACKGROUNDS

This section describes the application under test,
the Amazon EC2, and the Micro and Small server in-
stance types that we investigate.

The web application under test was Apache Roller,
an open source weblog engine written in Java. It can be
deployed on the most popular Java application servers
(e.g. Tomcat, GlassFish, JBoss) and can be used with
several vendors’ databases (e.g. MySQL, Derby, Post-
greSQL). It offers a large number of features, like group
blogging, moderation, spam prevention, RSS 2.0 and
Atom 1.0 support and a built-in search engine with
own indexing built on Apache Lucene [9]. The layout
and style of the blogs, the caching and rendering sys-
tem are highly customizable. From our point of view,
it is important that it is widely used at sites with sev-
eral thousands of users and blogs, like the very popular
developer blog of DZone [10]. This lets us assume that
the application itself does not have any implementa-
tion issues causing a performance bottleneck. We note
that the application has several configurable properties
that affect the performance, like caching, indexing of
the comments, etc. However, we did not tweak these
settings, we kept the default values for all of them.

We decided to deploy the Apache Roller appli-
cation in the Amazon EC2 platform, because it is
the earliest and most dominant provider among the
Infrastructure-as-a-Service (IaaS [11]) solutions. It is
important to note that Amazon offers Platform-as-a-
Service (PaaS [11]) services as well, like different types
of storage solutions, message queues or e-mail send-
ing, however, we did not use any of them, since we
wanted to investigate an existing application without
any PaaS-specific modifications.

With Amazon EC2, we can use virtual server in-
stances with a large variety of operating systems, on
top of which we can install any kind of applications.
Amazon EC2 offers several types of server instances,
each with different CPU capacity, memory size and
disk I/O performance [12]. The instances can be pur-
chased in three options.

• The On-demand option means that the usage of
the server is billed by the hour, this way an in-
stance costs nothing as long as it is not started.

• In case of the Reserved option, you have to pay
the price of the instance one or three years up-
front, loosing some flexibility, but achieving a
lower hourly price.

• The Spot instances represent a very dynamic
pricing option, meaning that the customers can
bid on the unused capacity of Amazon EC2. The

Spot instances can run as long as the bid exceeds
the current Spot price that changes periodically
based on supply and demand.

Amazon offers a one-year-long free trial period as
well, during which one can run On-demand Amazon
EC2 Micro instances 750 hours each month. Since
they are On-demand instances, the customer can de-
cide if he runs one instance continuously in each month
(31 ∗ 24 = 744), or runs multiple instances for shorter
periods of time. Besides the constraint on the instance
type, the free trial period has other limitations as well,
like 30GB of storage, 2 million I/Os and 15 GB band-
width out per month. The hardware specifications of
Micro instances [13] state that a Micro instance has
one 32-bit or 64-bit virtual core, 615 MiB memory,
and up to 2 EC2 compute units, for short periodic
bursts. This last property requires some explanation.
First of all, since an Amazon EC2 instance is a virtual
server, the underlying physical processor can change
over time. Nevertheless Amazon tries to provide a con-
sistent amount of CPU capacity, so they define 1 EC2
compute unit (ECU) as the equivalent of one 1.0-1.2
GHz 2007 Opteron or 2007 Xeon processor. The CPU
capacity of each instance type is defined via ECUs,
e.g. a general purpose large instance has 4 ECUs, but
a compute optimized extra large instance has 88 ECUs.
The Micro instance type is different from all the other
instance types, because the CPU capacity we can use
is variable, and the maximal 2 ECUs is only available
for short bursts. As Fig. 1 illustrates, a Micro instance
can operate at a low background level for longer peri-
ods, and can reach the maximum at short spikes. For
this reason, Amazon recommends Micro instances for
low traffic websites or blogs, small administrative ap-
plications and bastion hosts. Note that Fig. 1 does not
have scale on either of the axes. This is due to the
fact that Amazon does not specify how often a Micro
instance is allowed to burst, but in case of too frequent
or too long CPU bursts, the capacity of the instance is
decreased significantly.

Fig. 1 The CPU capacity of Micro instances. Source: [13]

The other Amazon EC2 server we investigate is the
general purpose Small instance. The Small instance

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



34 Performance Analysis of a Java Web Application Running on Amazon EC2

can use 1.7 GiB memory, while the CPU capacity is
constant 1 ECU, which means that we can use this
maximum capacity without any restrictions. This ca-
pacity is provided by one virtual CPU core, that can
be 32-bit or 64-bit, according to our choice. The Small
instance is not for free, not even in the first trial year.
Also, comparing the prices after the trial period, we
find that the hourly price of a Small instance is cur-
rently three times as much as the hourly price of a
Micro instance.

3. CONTRIBUTIONS

We investigated the scalability of the Apache Roller
blogger web application deployed on an Amazon EC2
Micro and Small instances, via performance measure-
ments. In this section, we describe the detailed setup
of these measurements and discuss the results of them.

3.1. The measurement environment

The browser clients were emulated by Apache JMe-
ter [14], an open source load tester tool. It was run
on a PC with a 2.133GHz Intel(R) Core(TM)2 CPU
6600, 4 GB RAM, on top of 64 bit Microsoft Windows
7 Enterprise, with Service Pack 1, the Java Runtime
Environment (JRE) was 64 bit Oracle JDK 6u45.

We executed the load tests against two server envi-
ronments, which differed from each other only in the
type of the EC2 instance: Micro and Small instances
were testes. Both instances run in the EU region (Ire-
land) with the same software configuration. The oper-
ating system was Amazon Linux, we installed MySQL
5.5.31 Community Server as the database management
system, 64 bit OpenJDK 6b12 as the Java Runtime
Environment, and Apache Tomcat 7.0.40 as the web
container needed to host the Roller web application.

3.2. The measurement methodology

We defined a test database in three different sizes
(DB1, DB2, DB3), and defined three different loads
of the clients (Load1, Load2, Load3). We executed the
measurements in all possible database size-load com-
binations in both environments. Table 1 summarizes
the three database sizes, while Table 2 describes the
different client loads.

It is important to note that a larger database affects
the performance in three ways:

1. The queries against a larger database can take
more resources and time.

2. The response pages may contain more data (e.g.
more comments per blog entry), so generating a
page can take more time.

3. The size of the response page can be larger, caus-
ing a larger network time.

The different database sizes can correspond to dif-
ferent time intervals, e.g. the number of registered

users doubles in a few months. Also, based on some
blogs we follow, we assumed that a blog is used by more
Readers than Commenters, and more Commenters
than Bloggers.

The client loads are defined via the number of con-
current users with different behaviors, namely Read-
ers, Commenters and Bloggers. A Reader user clicks
an entry on the main page of a blog in a loop, next,
he starts some search queries and clicks on some of the
search results. To emulate realistic user behavior, some
user think time is introduced between the requests, i.e.
the user threads wait a normally distributed random
time before sending the next request. The mean of
this waiting time is 5 minutes for reading an entry, 1
minute for reading a search result, and 2 seconds for
other requests.

Table 1 The definition of the test database sizes during
the measurements

DB1 DB2 DB3
Number of blogs 10 15 20
Number of entries in
each blog

20 30 40

Number of comments for
each entry

20 30 40

Number of registered
users

100 150 200

Table 2 The definition of the client loads during the
measurements

Load1 Load2 Load3
Number of Readers 50 70 100
Number of Commenters 10 15 20
Number of Bloggers 5 7 10

A Commenter user picks an entry from a blog, then
decides to comment it, so he logs in. Next, he starts a
loop in which he sends a comment, than refreshes the
page a couple of times so that he can read the answers
of other commenters. The mean of the waiting times
are 30 seconds for reading the entry, 1 minute for writ-
ing the comment, and 10 seconds before refreshing the
page.

A Blogger logs in, starts to write a blog entry, than
saves it as a draft. Next, he moderates the comments,
i. e. reads the list of comments, and deletes some
of them. Finally, he returns to the draft blog entry,
finishes and publishes it. Writing the draft takes 1
minute, picking a comment to delete takes 30 seconds,
and writing the final version of the entry takes 5 min-
utes.

We ran each test case (one load combined with one
database size) for one hour, during which the Readers,
Commenters and Bloggers all sent their requests con-
currently to the server, and the average response time

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 13, No. 4, 2013 35

was measured by JMeter. The number of requests dur-
ing an hour-long test case obviously depends on the
client load level, but was typically in the order of a few
thousand.

3.3. Memory issues on the Micro instance

As we mentioned in Section 2, an Amazon EC2 Mi-
cro instance has 615 MiB of memory. When we run our
first tests, even at the smallest load and database size,
we experienced that only after a few minutes of test-
ing, the Tomcat service was shut down by the Linux
OOM killer because of the lack of memory. It is worth
to know, that Micro instances are by default config-
ured without swap space, so that the number of I/O
requests - that are billed after the first 2 million free
requests per month - remains predictable.

Initially, we tried to handle the memory problem
without adding swap space. We set a 256 MB limit for
the Java heap size, but the Java Virtual Machine uses
additional space beyond this, for shared libraries, class
definitions, thread-local stacks, etc. Next we maxi-
mized the number of database connections at 10, and
the number of Tomcat processing threads at 30, since
both settings reduce the memory used by the system.
This way, we were able to run some of the test cases
with smaller loads and database sizes, but OOM killer
was still activated at larger loads.

Finally, we decided to introduce 1 GB of swap
space, out of which never was more than 300 MB used.
In the following sections, we report the results with
swap space enabled. It is interesting to note, however,
that the results without swap space, where we were
able to measure without OOM killer, did not differ
significantly from the results with swap space enabled.

3.4. The measurement results

Fig. 2, Fig. 3, and Fig. 4 present the average re-
sponse times measured on Amazon EC2 Micro, with
DB1, DB2 and DB3 test database sizes, respectively.
Note that because of the higher value in Fig. 4, we
chose two different scales on the vertical axes. Simi-
larly, subsequent figures will use either 1300 ms or 3200
ms as the maximal value on the vertical axis, according
to the highest value to display.

Fig. 2 Average response times on Amazon EC2 Micro
with DB1

Fig. 3 Average response times on Amazon EC2 Micro
with DB2

Fig. 4 Average response times on Amazon EC2 Micro
with DB3

Fig. 5 Average response times on Amazon EC2 Micro
with Load2

Investigating the diagrams, the conclusion is that
in each test case, the Bloggers experience the high-
est response time, while Readers face the lowest one.
According to our expectations, higher load and larger
database would result higher response times, however,
this is not fulfilled in some cases. In Fig. 2, it is conspic-
uous that the response times under Load2 are higher
than under Load3. If we depict the response times
with the load fixed at Load2, and growing database
sizes in Fig. 5, we can find a similar result, that the

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



36 Performance Analysis of a Java Web Application Running on Amazon EC2

response times in the Load2 − DB1 case are higher
than in the Load2−DB2 test case. The last (smaller)
anomaly appears in Fig. 3, Load2 shows slightly better
response times than Load1.

Fig. 6 The effect of CPU stealing (Load1 −DB1)

All these surprising results have the same explana-
tion: the particular CPU capacity of the Amazon EC2
Micro instances. As mentioned in Section 2, Amazon
periodically checks how much CPU resources the Mi-
cro instance has used. If this CPU usage is too high,
it temporarily limits the available CPU capacity of the
instance, i.e. it ”steals” CPU cycles from our instance
in favor of other instances running on the same physical
CPU. The rate of the CPU stealing can be monitored
using the Linux top utility, and can even exceed 90%.
Obviously, such drastic CPU limitation causes a dra-
matic increase in response times, as Fig. 6 illustrates it.
The second data series in the figure shows the result of
a 3-minutes-long test run with Load1 and DB1, during
which CPU steal rate was between 70% and 90%.

Amazon does not define exactly, in which periods
the CPU usage is checked, what the allowed level of
CPU usage is, and how long the CPU level is limited.
It is likely that it varies with the capacity needed by
other instances running on the same machine. For this
reason, we cannot define an exact load, when the limi-
tation of the CPU appears. During our measurements
we experienced that if we start tens of JMeter threads
in a short amount of time (e.g. 1-2 minutes), the CPU
usage on the Micro instance jumps over 90%, and a
drastic CPU limitation follows with a steal rate over
90%, which lasts several minutes. This made obvi-
ous what we expected, that an Amazon EC2 Micro
instance cannot handle the flash crowd [15] effect. A
flash crowd is a large spike in traffic to a website. A
special case of flash crowd is the so called Slashdot ef-
fect, when the cause of the suddenly increased traffic
is that a popular site with large traffic mentions or
links to a smaller site. In our measurements we tried
to eliminate this effect by defining a ramp-up period
of 400 seconds, during which the client threads started
gradually. Still, if later in the 60 minutes period of

the measurement a congestion of the requests hap-
pens, CPU stealing might take place. These periods
of limited CPU can be detected on the server side with
the top utility, but the client side results reveal them
as well, since JMeter registers the maximum response
time for each request type. If this maximum exceeds
10 seconds, it is very likely that the CPU of the Mi-
cro instance was limited for a shorter or longer period
during the measurement. The test cases that run with-
out CPU limitation were Load1−DB1, Load1−DB2,
Load2−DB2, Load3−DB1. This explains the earlier
detailed counter-intuitive scaling behavior with respect
to load and database size.

Fig. 7 Average response times on Amazon EC2 Small
with DB1

Fig. 8 Average response times on Amazon EC2 Small
with DB2

Fig. 9 Average response times on Amazon EC2 Small
with DB3

The average response times measured with the
Small EC2 instance are shown in Fig. 7, Fig. 8 and
Fig. 9. Since Small instances have a consistent amount
of CPU capacity (1 ECU), the surprising results ob-
served at Micro instances do not occur. Consequently,

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 13, No. 4, 2013 37

larger load or larger database size cause a higher aver-
age response time in almost all cases. A few exceptions
can be found at database sizes DB2 and DB3, where
Load2 produces about the same results as Load1.

The most interesting conclusions are derived from
the results of the Micro and Small instances depicted
inFig. 10, Fig. 11 and Fig. 12. At DB1 and DB2
database sizes, the Micro instance almost always per-
forms better than the Small instance. This can be
explained with the fact that the maximum CPU ca-
pacity of the Micro instance is the double of the Small
instance (2 versus 1 ECU). As long as the load is not so
high that a significant CPU stealing occurs, our appli-
cation can benefit from the high CPU spikes allowed.
At DB1 and DB2 database sizes, we can find only one
case, where the Small instance outperforms the Mi-
cro instance, namely the Readers in the Load2−DB1
case experience a lower response time with the Small
instance. In this particular case for the Micro instance,
we have seen in Fig. 2 that CPU stealing caused higher
response times.

Increasing the database size to DB3, Fig. 12 proves
that the Small instance outperforms the Micro instance
at all load levels. This means that the CPU require-
ment generated by these loads caused such amount of
CPU stealing that the CPU spikes of 2 ECU cannot
counterweigh the constant 1 ECU capacity of the Small
instance.

Fig. 10 Average response times on Amazon EC2 Micro
and Small instances with DB1

Fig. 11 Average response times on Amazon EC2 Micro
and Small instances with DB2

Fig. 12 Average response times on Amazon EC2 Micro
and Small instances with DB3

Fig. 13 Throughput of the servers with DB3

The throughput of the web application is shown in
Fig. 13 for both the Micro and Small instances. We
only display the case with the largest database size,
since the test cases with the other two database sizes
produced about the same results. We can observe that
at the investigated load levels, the throughput values
are nearly the same for both instance types.

4. RELATED WORK

Performance analysis of web applications has been
a popular topic in the last decade. Several papers in-
vestigate different performance aspects of different ap-
plications. The paper of Nagpurkar et al. [16] is related
to our work because it presents a detailed characteri-
zation of multiple selected Java web applications, and
one of the applications is Lotus Connections. Lotus
Connections is IBM’s social software platform (nowa-
days called IBM Connections [17]), whose blog engine
is built on Apache Roller. The behavior they define
for testing the blogging feature of the application, is
similar to ours: the users search, browse the blog en-
tries, add comments, create new entries in a predefined
mix. However, their focus is not the response time per-
ceived by the clients, but the server-side workload, so
they mainly analyze the hardware level performance
metrics like CPU utilization, cache misses, stalls, etc.
They conclude that Web 2.0 workloads cause differ-
ent server-side behavior opposed to traditional OLTP
workloads.

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



38 Performance Analysis of a Java Web Application Running on Amazon EC2

Although not dealing with performance analy-
sis, [18] still relates to our work. The authors propose a
formal framework for managing the evolution of an ap-
plication originally designed as a single-tenant system
for on-premise usage to a multi-tenant SaaS system.
Their approach is illustrated with the Apache Roller
application. So if someone plans to run a multi-tenant
blog engine as a SaaS, the proposal of [18] can be used
to transform Apache Roller, and our paper gives some
insight into the potential performance of the blog en-
gine when deploying it on Amazon EC2 Micro or Small
instances.

More recently, the performance of applications that
are deployed in the cloud are of growing interest. A
large part of the related research focuses on scientific
applications with high performance need. Ostermann
et al. [19] conclude that the performance and the relia-
bility of Amazon EC2 is insufficient for scientific com-
puting at large. Similar statements are made in [20],
where the authors found that using representative ap-
plication workloads, Amazon EC2 is six times slower
than a typical mid-range Linux cluster, and twenty
times slower than a modern High Performance Com-
puting system. They also revealed a strong correla-
tion between the percentage of time an application
spends communicating, and its overall performance on
EC2. These results are consonant with those published
in [21], stating that smaller, too frequent communica-
tion between nodes spoil the overall performance of
an Amazon EC2 cluster, but less frequent, large data
exchanges are acceptable.

The authors of [22] found that the performance of
Small instances is relatively stable and the mean re-
sponse time remains within 8% of the long-time aver-
age. However, different Small instances, which should
provide identical performance, can perform very differ-
ently up to a ratio 4. During our experiments, we did
not experience such a variance in the performance of
the Small instances.

A detailed performance and scalability analysis of
an n-tier web application deployed on different cloud
platforms is done in [23]. The authors investigated
RUBBoS [24], an n-tier electronic commerce system,
on three different cloud platforms: Amazon EC2, Open
Cirrus, and Emulab [25]. They tested several deploy-
ment configurations with respect to the number of web
servers, Java web containers, and numbers of SQL and
data nodes in the MySQL cluster, thus testing hori-
zontal scalability. In the case of Amazon EC2, vertical
scalability was examined as well, by changing the in-
stance types (small, large, extra large, and cluster).
The results show a good vertical scaling for Amazon
EC2, and good horizontal scalability on Open Cirrus
and Emulab. The horizontal scalability of Amazon
EC2 was, however, very poor: increasing the num-
ber of MySQL data nodes caused a degradation in
the throughput, although the CPU utilization of the
servers was not saturated. The authors found the cause
of this behavior in the large number of client threads,
larger context switching time, and network latency.

5. CONCLUSIONS

We have investigated the performance of an open
source Java weblog engine running on different server
types in the cloud. We have deployed the application in
the Amazon EC2 cloud, on Micro and Small instances.
The Small instance provides a consistent CPU capacity
of 1 ECU, while the Micro instance allows CPU spikes
of 2 ECU, but throttles the CPU capacity at a very
low level, if CPU spikes are too frequent.

We have sent requests to both server types in the
name of concurrent users using a load tester tool. We
have examined three different database sizes and three
different client loads. We have found that at the largest
examined database size, all of the examined client loads
could be served faster with a Small instance, due to
the more intensive CPU stealing at the Micro instance.
At lower database sizes, however, the Micro instance
proved to perform better.

Thus we can conclude that the choice between
Amazon EC2 Micro and Small instances should con-
sider the load of the instances, since lower load levels
can be served not only cheaper, but also with better
performance using Micro instances. Our results also
suggest that an adaptive load balancer, dispatching
only that much amount of requests to Micro instances
so that CPU throttling is avoided, can lead to a more
cost effective operation of web applications in the Ama-
zon Elastic Compute Cloud. Our future work will focus
on developing a prototype for such a load balancer.

Another possible direction for future work is to
elaborate an analytical model that can calculate the
load levels at which an application should be deployed
on Micro or Small instances. Such model has to take
the hourly prices of the instance types and the service
time distribution of the requests into account.

ACKNOWLEDGEMENT

This work was partially supported by the Euro-
pean Union and the European Social Fund through
project FuturICT.hu (grant no.: TAMOP-4.2.2.C-
11/1/KONV-2012-0013) organized by VIKING Zrt.
Balatonfúred. This work was partially supported by
the Hungarian Government, managed by the National
Development Agency, and financed by the Research
and Technology Innovation Fund (grant no.: KMR 12-
1-2012-0441).

REFERENCES

[1] Future of Cloud Computing, North-
Bridge, 2012, http://northbridge.com/

2012-cloud-computing-survey/

[2] The NIST Definition of Cloud Computing,
National Institute of Standards and Technol-
ogy, 2011, http://csrc.nist.gov/publications/

nistpubs/800-145/SP800-145.pdf

[3] Forecast Overview: Public Cloud Services, World-
wide, 2011-2016, 4Q12, Gartner, 2013.

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 13, No. 4, 2013 39

[4] Survey Analysis: CFOs’ Top Imperatives From
the 2013 Gartner FEI CFO Technology Study,
Gartner, 2013.

[5] ARMBRUST, M. et al.: A view of cloud com-
puting , Communications of the ACM 53, No. 4
(2010) 50–58

[6] Amazon Elastic Compute Cloud. http://aws.

amazon.com/ec2/

[7] IMRE, G. et al.: Performance of a Java web appli-
cation running on Amazon EC2 Micro instance, in
12th International Conference on Informatics, 2013,
204–209

[8] Apache Roller blog engine. http://roller.apache.

org/

[9] Apache Lucene search engine. http://lucene.

apache.org/

[10] JRoller Java blog. http://www.jroller.com/

[11] ZHANG, Q. et al.: Cloud computing: state-of-the-art
and research challenges, Journal of Internet Services
and Applications 1, No. 1 (2010) 7–18

[12] Amazon EC2 instance types. http://aws.amazon.

com/ec2/instance-types/

[13] Specification of Amazon EC2 Micro instances.
http://docs.aws.amazon.com/AWSEC2/latest/

UserGuide/concepts_micro_instances.html

[14] Apache JMeter load tester. http://jmeter.apache.

org/

[15] NIVEN, L.: The flight of the horse. Ballantine Books,
1973, ISBN 0-3452-3487-1

[16] NAGPURKAR, P. et al.: Workload characterization
of selected JEE-based Web 2.0 applications, in IEEE
International Symposium on Workload Characteriza-
tion (IISWC) , IEEE, 2008, 109–118

[17] Home page of IBM Connections. http://www-03.

ibm.com/software/products/us/en/conn

[18] JU, L. et al.: Tenant onboarding in evolving multi-
tenant Software-as-a-Service systems, in IEEE 19th
International Conference on Web Services (ICWS),
IEEE, 2012, 415–422

[19] OSTERMANN, S. et al.: A performance analysis of
EC2 cloud computing services for scientific comput-
ing, Cloud Computing, Springer, 2010, 115–131

[20] JACKSON, K. R. et al.: Performance analysis of
high performance computing applications on the ama-
zon web services cloud, in IEEE Second International
Conference on Cloud Computing Technology and Sci-
ence (CloudCom), IEEE, 2010, 159–168

[21] HILL, Z. et al.: A quantitative analysis of high perfor-
mance computing with Amazon’s EC2 infrastructure:
The death of the local cluster?, in 10th IEEE/ACM
International Conference on Grid Computing, IEEE,
2009, 26–33

[22] DEJUN, J. et al.: EC2 performance analysis for re-
source provisioning of service-oriented applications, in
Int’l Conference on Service Oriented Computing. IC-
SOC/ServiceWave 2009, Springer, 2010, 197–207

[23] JAYASINGHE, D. et al.: Variations in performance
and scalability when migrating n-tier applications to
different clouds, in IEEE International Conference on
Cloud Computing (CLOUD), IEEE, 2011, 73–80

[24] RUBBoS: Bulletin board benchmark. http://jmob.

objectweb.org/rubbos.html

[25] Emulab - Network emulation testbed. http://www.

emulab.net

Received November 18, 2013, accepted Dec 17, 2013

BIOGRAPHY

Gábor Imre graduated (M.Sc. in Software Engineer-
ing) with distinction in 2004. He is an Assistant Lec-
turer in the Department of Automation and Applied
Informatics at the Budapest University of Technology
and Economics. His research fields focus on software
engineering, performance analysis, performance mod-
eling, cloud computing and Java Enterprise Edition.
He won the IBM Faculty Award (2009) and the IBM
Ph.D. Fellowship Award (2006).

Hassan Charaf received his PhD in 1998. He is an
Associate Professor and fellow in the Department of
Automation and Applied Informatics at the Budapest
University of Technology and Economics. He is the
head of the IT group. As an out-standing figure in
teaching, research and development he is in key po-
sitions at several organizations at the university. His
research fields are: software modeling and model pro-
cessing; mobile platforms; distributed systems and
cloud computing; and data technologies.

László Lengyel received his PhD in 2006. He is an
Associate Professor and fellow in the Department of
Automation and Applied Informatics at the Budapest
University of Technology and Economics. His vari-
ous research fields focus on software modeling, meta-
modeling, graph rewriting-based software model trans-
formation, model-driven development, constraint val-
idation, validated model transformation and aspect-
oriented techniques. The most important milestones
in his professional career include, but are not limited
to: the Bolyai János professorship (2006-2010), the
Siemens Excellence Award (2008), and being chosen
as the recipient of the NJSZT Kemény János-award
(2012).

ISSN 1335-8243 (print) c© 2013 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk


