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ABSTRACT

Development of algorithms for solving various kinds of computer related problems consists of several consecutive and possibly
repetitive phases. The final and very important step in this process is to implement the developed algorithm in a selected programming
language, to test its behavior on some real-world test cases and to compare the results with the results of other algorithms. This
evaluation can be done by comparing different execution indicators among which the time consumption is usually considered to be the
most relevant. On the other hand, timing the algorithms in practice is very difficult since it is hard to ensure a fair and reproducible
environment in which algorithm’s implementations can be compared. To overcome this barrier, we introduce a system called ALGATOR
that was developed to facilitate the algorithm evaluation process. Besides the time complexity and the project-specific indicators,
ALGATOR also measures the counters of Java code and Java bytecode usage. The measurement of the former is implemented by using
special tags that are to be inserted in the appropriate lines of Java code while the measurement of the latest is enabled by using an
adapted Java virtual machine, which counts the Java bytecode usage and reports the statistics. By using this counters new timing-
independent criteria for algorithm assessment can be derived. In this paper we present some basic concepts of the ALGATOR system
and give some examples of how to use the system in practice. We show the distribution of the usage of Java bytecode instruction for the
sorting problem and the usage of the Java bytecode indicators in the time-complexity prediction for the matrix multiplication algorithm.
The examples presented in this article show how the classic time measurement methods can be replaced by measuring some other more

reliable indicators, and how this measurements can help to asses the quality of our algorithms.
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1. INTRODUCTION

The results obtained by the last two phases of the algo-

rithm design process (i.e. the proof of the correctness and
the estimation of the complexity) are based on the assump-
tions of the selected computational model, which (more or
less successfully) imitates the real environment in which
the algorithm will be implemented. From a theoretical
point of view, these results are interesting and completely
legitimate, since they allow (theoretically) to compare and
classify algorithms. When applying these results in prac-
tice, however, problems may arise, as it often shows that
the real environment differs from the theoretical assump-
tions. Thus, for example, theoretical models usually do not
include assumptions about the concrete implementation of
memory management (and more specifically, the influence
of the cache), which in practice greatly affect the speed of
implementation.
To choose the best algorithm for solving a given problem,
theoretical results may help in the first round of selection,
where the algorithms with the best asymptotical bound-
aries are selected. A real distinction between the selected
algorithms with the same theoretical boundaries can only
be made by comparing their behaviour in the real envi-
ronment [3,/4]. Timing the algorithms in practice is very
difficult since it is hard to ensure a fair and reproducible
environment in which algorithms can be compared. The
results of the measurements are influenced by various fac-
tors, some of them are more or less random. In order to
better assess the practical time complexity, we, therefore,
need additional tools to measure independent indicators of
the implementation of algorithms.

In this paper we present a novel approach for measur-
ing and predicting the complexity of the algorithms’ imple-

ISSN 1335-8243 (print) © 2018 FEI TUKE

mentations by counting the Java bytecode instructions [2].
In Section II. we present a tool called ALGATOR [|1], which
was designed to facilitate the algorithm comparison process
by measuring different indicators. We also present the three
types of measurements which are supported by the ALGA-
TOR. In Section III. we focus on a simple problem of matrix
multiplication and present different approaches to produce
useful performance predictions based on the java bytecode
instructions usages. We conclude this paper with the final
remarks in Section I'V.

2. THE ALGATOR

The ALGATOR is a computer application that was de-
veloped to support and to facilitate the algorithm design and
evaluation process. The main entity within the system is
the so called ‘project’ which it defined by a set of defini-
tions for the problem, the algorithms and the test sets. The
system was designed to be as general as possible and there-
fore applicable in a wide range of problem domains. All
the entities (projects, algorithms, test cases) are primarily
defined on an abstract level and the system is trained to ex-
ecute abstract algorithms on abstract test cases. After se-
lecting a real problem, user concretizes the abstract parts of
the project and makes the project ‘alive’ and prepared to be
used to execute real algorithms on real data.

The abstraction of the project is integrated in several parts
of the ALGATOR system. The algorithm is defined as a
block of code (e.g. a class in Java) with predefined hook
used to pass the parameters and start the execution (e.g.
a method signature). The test case and the results of the
execution are defined as an arbitrary data structures imple-
mented in a selected programming language. A test set,
which represents a minimal execution unit, is composed of
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several test cases and it is iterated through during the al-
gorithm execution process. To collect and present the re-
sults of the algorithm execution, the ALGATOR uses the
so called result sets (i.e. the sets of parameters and indi-
cations of the execution) and the presenters (the definition
files in which the type and the range of the presentation is
provided). All these abstractions make the system flexible
and usable in many fields of computer science.

2.1. The ALGATOR project

To define an ALGATOR project, user must provide both,
the configuration files and the source code in a selected pro-
gramming language (Java, C or C++). The configuration
files define administrative data (the name and the author of
the project, the number of supported algorithms, the time
limit for algorithm execution, ...) while the source code pro-
vide the logic for executing the algorithms and for evaluat-
ing the results of the execution. The configuration files use
the json format and have predefined names and positions in
the folder hierarchy of the project. For example, the config-
uration file for the project P is named P . atp and it is placed
in the subfolder proj of the project folder PROJ-P. Besides
the basic information about the project the configuration of
the project also include the information about algorithms
(the name and the author of each algorithm, programming
language of the algorithm, ...), about test sets (the number
of test cases of each test set, sizes of the test cases, time
limits for execution of a test case, ...) and about the results
(the number and the type of the indicators of execution).

The source code of the project is provided in the follow-
ing classes (in the case of Java programming language; for
C/C++ the logic is similar): TestCase (a class with prede-
fined data structures needed to present the input and the out-
put of the algorithms), AbsAlgorithm (a class that defines
an abstract method that it will be used (when implemented)
as the heart of the algorithm) and TestSetIterator (a
bridge between the definition files and Java data structures;
in this class test set configuration file is read and Java test
case is generated).

2.2. Types of the ALGATOR engines and users

The ALGATOR was developed to be used as a stan-
dalone and/or as a server application. A standalone ap-
plication is used to develop, test and evaluate algorithms
in a separated domain where the results are used only by
a limited and typically small group of people. This appli-
cation can be installed and used on every personal com-
puter. The main drawback of using the standalone version
is that the results of the execution can not be fairly com-
pared with the results of other groups of the researchers.
On the other hand, the server application offers the possi-
bility to run algorithms provided by different researchers of
different groups on a single computer. The results obtained
are accurate and comparable. The server version is usu-
ally installed on an internet server computer and accessed
through the web interfaces.

ALGATOR supports four different user roles: the system
administrator (installs and manages the whole system and
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has the access to all the resources of the system), the project
administrator (defines the project and has an access to all
the project resources), researcher (defines an algorithm for
the selected project, runs predefined tests and compares the
results with the results of other algorithms) and the guest
(observes all public projects, algorithms, and test results).
The logic of the user rights and roles is equally supported
in both versions of the ALGATOR, but it is a bit relaxed in
the standalone version since all the roles are usually played
by a single user.

2.3. The measurements

For each problem there are several different measure-
ments that ensure the correctness and by which one can
assess the efficiency of the algorithms. These measure-
ments include the indicators of time consumption and of
the quality of the result, counters for the usage frequency
of the parts of the program code, and the counters of the
usage of the basic execution operations (i.e. the machine
instructions). In the ALGATOR system all kind of the
measurements are supported and are grouped into three
categories: the EM, CNT and JVM indicators.

EM indicators. The EM indicators are used to mea-
sure the time and other project-specific metrics . All mea-
surements of the time indicators are performed automati-
cally. To provide as accurate time indicators as possible the
ALGATOR tries to reduce the influence of the uncontrolled
computer activities (e.g. sudden increase of a system re-
source usage) by running each algorithm several times. The
system measures the first, the best, the worst and the aver-
age time of the execution. The project administrator only
needs to specify the phases of algorithm execution (e.g. the
pre-processing phase, the main phase, the post-processing
phase, ...) and to select which of the time indicators are to
be presented as the result of execution. The project-specific
indicators are defined by the project administrator. They
can be presented as a string or as a number. For exam-
ple, for exact algorithms, the value of an indicator could
be "OK” (if the algorithm produced the correct result) or
"NOK” (if the result of the algorithm is not correct). For
approximation algorithms the value of an indicator could
be the quality of the result (i.e. the quotient of the correct
result and the result of the algorithm).

The values of the EM indicators are generated by AL-
GATOR performing the following steps:

1. load the test case and create its project-specific rep-
resentation,

2. load the algorithm (if the algorithm is implemented
in Java, for example, the ALGATOR uses the Java re-
flection capabilities to create the algorithm instance),

. read the values of the test case specific parameters,
. run the algorithm and measure the time consumption,

. read and store the values of the time indicators,

AN »n B~ W

. determine and store the values of the project-specific
indicators,
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7. write stored indicators into the output as prescribed
in the result description configuration files.

CNT indicators. The CNT indicators (the so called coun-
ters) are used to count the usage of the parts of the program
code. This option is used to analyse the usage of a certain
system resource or to count the usage of the selected type of
commands on the programming language level. Using this,
one can, for example, measure how many times the mem-
ory allocation functions were executed during the algorithm
execution and the amount of the memory allocated by these
calls. One can also use CNT indicators to detect which part
of the algorithm is most frequently used. For example, if
the problem in concern would be the data-sorting, using
the CNT indicators one could count the number of compar-
isons, the number of swaps of elements and the number of
recursive function calls (which are the measures that can
predict the algorithm execution behaviour [9]]). To facilitate
the CNT indicators in the project, the project administrator
has to define the names and the meaning of the counters
and the researchers have to tag the appropriate places in
their code. Everything else is done automatically by the
ALGATOR.

JVM indicators. Before the execution of the algorithm,

the algorithm code has to be compiled to a code on a lower
level. For the C and C++ projects this means that the algo-
rithms are compiled to the machine code of the architecture
used by the system, while for the Java projects this means
that the algorithms are compiled to the Java bytecode. The
performance of the algorithm depends on the number and
the type of the low-level instructions used during the ex-
ecution [5]. The ALGATOR enables the analysis of the
low-level instruction usages for the algorithms written in
the Java programming language. During the execution of
the algorithm ALGATOR counts the bytecode instructions
that were used and at the end it prints out the statistics for
each instruction (the so called JVM indicators). To enable
this facility, a special VMep library [7,8]] was developed
and integrated into an open-source Java Virtual Machine
JamVM [6]. The VMep enables bytecode counting and
makes ALGATOR a very powerful tool for deep analysis
of the algorithms’ behaviour.
In the rest of this paper we will first present some details
about the implementation VMep, then we will give two ex-
amples of how the JVM indicators can be used in practice.
We will show some method for predicting the time con-
sumption based on the analysis of the JVM indicators.

Note that the EM and the CNT indicators are provided for
programs written in Java and C++ language while the JVM
indicators are (due to obvious reasons) available only for
programs written in Java. Currently, an extension of the
system is being developed that will enable machine instruc-
tion counting for programs running in a non-virtual envi-
ronment.
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3. USING JAMVM AND VMEP LIBRARY

JamVM 6] is on open source implementation of Java
Virtual Machine designed by Robert Lougher. It is a mini-
mal fully operational implementation of JVM written in C
and can be translated on several platforms. In order to facil-
itate Java bytecode counting in JamVM and to simplify the
usage of the solution, a special Java library called VMep
(Virtual Memory entry point) [7] was developed. To link
the system independent Java world with system dependent
java virtual machine JamVM, VMep was implemented as
a collection of native methods. The main VMep class that
supports the initiation and finalisation of the observation is
called Monitor. It offers methods like start (), stop()
and addRuntimeFilter (). The first methods are used to
start and to stop (or to pause) the observation, while the
latest is used to add filters (i.e. to limit the scope) of the
observation and thus to speed up the execution of the pro-
gram. The Monitor class has two important subclasses,
namely InstructionMonitor and MemoryMonitor. The
first one is used to provide information about instruction
usage while the latest covers the area of memory usage. A
usage of VMep library is presented in Listings [2| Here we
count the instructions used by the factorial() method
(using this method the program multiplies the first 100 in-
tegers).

import jamvm.vmep.InstructionMonitor;
import jamvm.vmep.Opcode;

public class VMepTest {

static int factorial (int n) {
int result=1;
for (int i=2; i<=n; i++){
result = 1i;

}

return result;

public static void main(String[] args) {
InstructionMonitor monitor = new
InstructionMonitor () ;
monitor.start (); // Start observation
factorial (100);

monitor.stop(); // Stop observation

//
int[] iUsage = monitor.getCounts();
for (int i = 0; i < iUsage.length; i++) {

if (iUsage[i] > 0) {
String iName = Opcode.getNameFor (i) ;
int iFreq = iUsage[i];
System.out.printf ("$—14s :
iFreq);

%$d\n", iName,

}
}

}
}
Fig. 2 Using the VMep library to count the instructions usage
while multiplying the first 100 integers

The program VMepTest from Listings [2| prints a statis-
tics about the instructions usage as presented in List-
ings 3] We observe that only 16 different Java bytecode
instructions (out of 202) were used to calculate the re-
sult. The overall number of used instructions was 904 or
around 9 instruction per a loop (note that the calculation of
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Computer ID F0.CO

Algorithms Testsets

trioare S [roare Testset3 AS Testset3
o JWirth AS JWirth
(<14 s Wi 2 Testsetd AS TestSetd
Input fields Output fields

Group AS Group

*EM AS

@n 65 [l ~an rc un

Computed N*(ILOAD+ALOAD_1+IALOAD)/(17000*Tmin) AS X,Tmin

Filter | N>=100000 ‘

Fig. 1

factorial(100) was performed in a loop that iterated for
99 times). We can also observe that the for-loop condition
(performed by IF_ICMPGT instruction) is checked for 100-
times (which equals the number of loop iterations plus one).

ICONST-1 HE"
ICONST.2 1
BIPUSH H"
ILOAD.0 : 100
ILOAD-1 100
ILOAD.2 : 199
ALOAD_O 1
ALOAD_1 H"
ISTORE_1 : 100
ISTORE-2 : 1
IMUL 99
IINC 99
IF_ICMPGT 100
GOTO 99
IRETURN H"
INVOKEVIRTUAL : 1

Fig. 3 A result produced by the VMepTest class

Due to additional tasks that are performed by the VMEP
library during the execution of algorithms (i.e. collect-
ing the information on instructions and memory usage),
the running times of the algorithms executed by JamVM
are significantly bigger than those obtained by running the
same algorithms on a standard VM. The slowdown factor
tends to be a constant, around 3.6 on average.

VMep library in integrated in ALGator in such a
way that a final user can use it without actually know-
ing its implementation details. By calling the appro-
priate  ALGATOR’s module, the user gets Java byte-
code statistics ready to be analysed by the analytics
module. More precisely, by executing, for example,
java algator.Execute Sorting -m jvm, ALGATOR
will run all algorithms in the Sorting project and save the
results to output files. By calling java algator.Analyse
Sorting the user will be able to analyse the results and
produce tables, charts and graphs as depicted in Figure [T}
In this example we were looking for a relation between
the minimal execution time (Tmin) and the three most
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GroupBy |N ‘
SortBy | ‘

A-sQL Run!

X

D Testset TestlD Pass N IWirth.X JWirth.Tmin
26 TestSetd Test-26 DONE 350000 31976.0918... 42792
31 TestSetd Test-31 DONE 400000 41799.1195... 43508
36 TestSetd Test-36 DONE 450000 43880.4818... 53471 [ virtn Tmin [ owirtnx
41 TestSetd Test-41 DONE 500000 55899.2819... 51895
46 TestSet4 Test-46 DONE 550000 61073.4087... 57152 X N M Y *Pass [T]
51 TestSetd Test-51 DONE 600000 63259.5045... 65457 @ Stal B
56 TestSetd Test-56 DONE 650000 71379.0378... 69011 ine tair ar *Tmin [8®] X %
61 TestSetd Test-61 DONE 700000 77141.0268... 74378 Box

- - 4 Tace & Do 0 cnne _eent

Using ALGATOR’s analytics module to analyse the Java bytecode usage in Sorting project

frequently used Java bytecode instructions (i.e., ILOAD,
ALOAD_1, and TALOAD) in the JWirth algorithm. We found
out that Tmin (the blue line in graph) very closely correlates
with X (the red line in graph), where X was defined to be

N+ (ILOAD +ALOAD_1 +IALOAD)

X = . . )
17000 * Tmin

4. JVM INDICATORS IN PRACTICE

To explore the measuring capabilities of the ALGATOR
we chose a simple matrix multiplication problem: given
two square matrices A and B each containing n> elements
(aij and b;; for i, j = 0,...,n— 1) calculate the elements of
a square matrix C by

n—1
cij =Y, aixbij.
k=0

Since the number of operations in this formula is cubic
to n, we can reasonably expect that the time complexity of
any algorithm implementing this formula would have the
time complexity ®(n’). The simple implementation of this
formula is presented in listings in Figure 4]

void MUL(int[][] A, int[][] B, int[][] C) {
for (int i = 0; i < A.length; i++) {
for (int j = 0; j < A.length; Jj++) {
for (int k = 0; k < A.length; k++) {
C[i]1[J] += A[i]l[k] = B[kI[J];
}
}

Fig. 4 The Java code for the MUL algorithm

We named this implementation the MUL algorithm since
its main (and the most consumptive) operation is the mul-
tiplication. Using the ALGATOR’s time complexity indica-
tors we measured the time needed to execute this algorithm
on a set of test cases with dimensions n ranging from 200
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n ICONST0 ILOAD ALOAD.1 ALOAD2 ALOADJ3 JIALOAD AALOAD ISTORE
10 111 7221 2221 1000 1000 3000 3000 111
20 421 56841 16841 8000 8000 24000 24000 421
30 931 190861 55861 27000 27000 81000 81000 931
40 1641 451281 131281 64000 64000 192000 192000 1641
50 2551 880101 255101 125000 125000 375000 375000 2551

IASTORE DUP2 IADD IMUL IINC IFICMPGE GOTO ARRAYLENGTH
10 1000 1000 1000 1000 1110 1221 1110 1221
20 8000 8000 8000 8000 8420 8841 8420 8841
30 27000 27000 27000 27000 27930 28861 27930 28861
40 64000 64000 64000 64000 65640 67281 65640 67281
50 125000 125000 125000 125000 127550 130101 127550 130101

Table 1 The Java bytecode instructions usages in the matrix multiplication algorithm.

to 500. We run all the tests described in this paper on a
personal computer with Intel(R) Core(TM) i7-6700 CPU
running at 3.40GHz with 32Gb of memory. The execution
of the matrix multiplication for smaller inputs (n=200) was
done in 6000 microseconds and for larger matrices (n=500)
in 140.000 microseconds. To eliminate the impact of the
real environment we executed all the tests (i.e. we calcu-
lated each product) for 500 times and we took the minimal
time of all executions (obviously, this is the time in which
the execution can be performed if the environmental influ-
ences are as small as possible). The time of the execution
for the matrix multiplication problem is depicted in Figure
with blue line.

void MUL(int[][], int[][], int[][]);
0: iconst_.0 36: dup2
1: istore 4 37: iaload
3: iload 4 38: aload-1
5: aload-1 39: iload 4
6: arraylength 41: aaload
7: if_icmpge 73 42: iload 6
10: iconst-0 44: iaload

11: istore 5
13: iload 5

45: aload.-2
46: iload 6

15: aload-1 48: aaload
iload 5
17: if_icmpge 67 51: iaload
20: iconst-0 52: imul
21: istore 6 53: iadd

23: iload 6

25: aload-1

26: arraylength
27: if_icmpge 61
30: aload.3

31: iload 4 67: iinc 4, 1
33: aaload 70: goto 3
34: iload 5 | 73: return

Fig. 5 The Java bytecode for the MUL algorithm

54: iastore
55: iinc 6, 1
58: goto 23
61l: iinc 5, 1

\

\

\

\

|

|

\

|

\

\

16: arraylength | 49:

\

\

\

|

\

\

\

| 64: goto 13
\
\

In the same graph a simple prediction for the execution
time is also depicted. It was calculated by a simple method
called Calcl. In this method we calculated a multiplica-
tion factor ¢ = avg(time;/n®). The red dots in Figure@rep-
resents a graph of a function cn®. Obviously the red dots
are of the same shape as the blue line (which is due to the
fact that our algorithm has ®(n?) time complexity) but it
is not very accurate. An average error (i.e. the difference
between measured (blue) and calculated (red) time divided
by measured time) is 11,25%. This error is a bit smaller (i.e
7,1%) if we take only bigger dimensions of input matrices
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(from 300 to 500), but it is still relatively big. Therefore
the method Calc1l can not be considered a very successful
method.

160000
140000
120000
100000

80000

60000

Time complexity in microseconds

40000

20000 —/_—/

o
200 250 00 0 400 450 s00

Dimension of the matrices (n)

Fig. 6 The time complexity of the MUL algorithm (blue line) and
the performance prediction calculated by a simple Calc1 method
(red dots).

In order to find better performance prediction for this
algorithm we used ALGATOR’s capability for measuring
the usages of the Java bytecode instructions (the bytecode
for the algorithm MUL is listed in Figure [5). The results
show that only 16 (out of 202) Java bytecode instructions
are used during the execution of this algorithm: 10 in-
structions for the stack manipulation (ICONST_0, ILOAD,
ALOAD_1, ALOAD_2, ALOAD_3, IALOAD, AALOAD,
ISTORE, TASTORE, DUP2), two instructions to control
the flow of the program (IF_ZICMPGE, GOTO), the AR-
RAYLENGTH instruction used to determine the size of
an array, and three arithmetic instructions (IADD, IMUL,
IINC). The frequencies of the usages of these instructions
for the matrices of sizes from 10 to 50 are presented in Ta-
ble E} As it is clearly seen from the data in the table, for
most of the instructions their usages in the matrix multipli-
cation algorithm is of the order ®(n?). The only exceptions
are the instructions ICONST_0 and ISTORE with the order
©®(n?). From the data presented in Table |I| we calculated
the overall number of the instructions INST(n) used in the
MUL algorithm:

INST(n) = 250> + 12n% + 12n + 6.
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This means that in the case of n = 500, for example,
the JVM performs 25 x 5003 + 12 x 500% 4+ 12 x 500 + 6 =
3.128.006.006 bytecode instructions to execute the MUL
algorithm. Since this execution requires approximately
140.000 microseconds, an average time to execute one Java
byte code instructions is 0,044ns.

Analyzing the results presented in Table [I] (extended with
measurements for n=60, ..., 500) a natural question arises:
can we calculate an average time (over all the measure-
ments) used to execute one bytecode instruction and use
this average to predict the behaviour (i.e. time consump-
tion) of the MUL algorithm for a given n. To find an an-
swer to this question, we propose the following method
Calc2: calculate the average time I, used for one byte-
code instructions while performing MUL on the matrix of
size n (e.g. Ispo = 0,044) and calculate / as an average
of I,. Then use I to estimate the execution time of MUL
by T'(n) = I« INST (n). Using this method we calculated
I = 0,039ns (note that we used only measurements for
n = 300,...,500 since we assume that the measured times
are much more accurate for bigger inputs). Surprisingly,
the Calc2 method gives very similar results as the method
Calcl: an average difference between those two methods
is 0,03% for n = 300,...,500. In other words, calculating
the uniform average time per bytecode instruction yields
another useless method for estimation of time consumption.

The main reason for bad results is that some bytecode
instructions are much more expensive than the others. For
example, we can reasonably assume that the IMUL instruc-
tions takes much more time to execute than the ILOAD in-
struction (the first instruction multiplies two integers while
the second one loads an integer onto a stack). The question
is, how many different types of instructions (instructions of
the same type take approximately the same time to execute)
are included in the MUL algorithm. To answer this question
we implemented two algorithms, both of then very similar
to MUL. The first one, the ADD algorithm, is an exact copy of
MUL with the only difference in the line 5 where we instead
of multiplication use addition (C[i] [j] += A[i]l [k] +
B[k] [j];). The execution of this algorithm results in the
usages of exactly the same Java bytecode instructions, the
only difference is that instead of IMUL in ADD algorithm
only IADD instruction is used (which is logical, but we also
proved this by scanning the ALGATOR’s jvm indicators).
As a consequence, in the MUL we have n® TADDs and n’
IMULSs while in ADD we have only 2 x n® IADDs. The num-
ber of all the other instructions is equal in both algorithms.
In the second algorithm, SET, we deleted line 5 of MUL and
replaced it with 4 lines as showed in the listings in Figure

void SET (int [][] A, B, C) {
int x=0,vy;
for (int i = 0; i < A.length; i++) {
for (int j = 0; j < A.length; j++) {
for (int k = 0; k < A.length; k++) {
y = A[i]1[3];
Bli][]J] = x;
Clil (3] = vy
x++;
}
}
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Fig. 7 The Java code for the SET algorithm
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Fig. 8 The time complexity of the SET algorithm (blue line) and
performance prediction calculated by a Calc2 method (red dots).

The resulting SET algorithm compiles into a Java byte-
code program with exactly the same number of instructions
as the MUL, which means that for executing SET on matrices
of size n, JVM also performs INST (n) bytecode instruc-
tions. The only difference is that the SET does not use the
IADD and IMUL instructions.

The algorithm SET uses only the following twelve in-
structions: ICONST_0, ILOAD, ALOAD_1, ALOAD_2,
ALOAD_3, IALOAD, AALOAD, ISTORE, IINC,
IF_ICMPGE, GOTO, ARRAYLENGTH. We made an as-
sumption that these instructions are all equally consump-
tive, we named them as “simple instructions”, and we
used the method Calc2 to calculate their average execu-
tion time /. Using the resulting I = 0,0248ns (for the
further reference we will denote it with ;) and formula
Tsgr(n) = I« INST (n) we found out that the Calc2 meth-
ods in this case yields almost a perfect estimation. Figure|§]
shows the measured time of the SET method (blue line) and
its estimation provided by Calc2 method. An average error
(n =200,......,500) of this method is 0,4%. This means
that the calculated I; = 0,0248 nanoseconds is a reasonably
good estimation for the execution time of every simple Java
bytecode instruction on this computer.

000
000

1000

Differences in complexities
in microseconds

2000

3000

Dimension of the matrices (n)

Fig. 9 The differences in the time complexities of the MUL and
ADD algorithms.

To make a good estimation for the MUL algorithm we
now only have to determine the estimation for the time
complexities of the IMUL and IADD instructions. First we
compare the execution time of the algorithms MUL and ADD
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to find out that these two algorithms are comparable in the
sense of time consumption. Graph [9]shows the differences
in the time complexities of the MUL and ADD algorithms.
According to the oscillation of the graph we can conclude
that both algorithms are equally consumptive, the repetitive
exchange of the leadership (positive and negative values on
the graph) indicates that the times of execution were mea-
sured with a certain relatively small (on average less than
1%) error. Since the only difference between MUL and ADD
is in the number of IMUL and IADD instructions used (the
second one uses only IADDs while the first one uses both)
and since we proved that there is no real difference in time
consumption, we can conclude that the time consumptions
of the IADD and IMUL instructions are the same. This is
not just an interesting result but it also gives us an oppor-
tunity to estimate the real time consumption of both arith-
metic instructions. In the MUL we have INST (n) instruc-
tions among which there are 2 x n® arithmetic instructions.
Assuming that the time complexity of an arithmetic instruc-
tion (I) equals Iy = Is + A we get

Tvur(n) — Tser(n)
A =AVG, 3 .
2%n

§ oo A
8 Vo
8 P
g 100000 71 -
2 y _/
gsmn ,:”
g A
E 60000 - /_—f
o V.
E 40000 —

20000 -

o

200 250 350

Dimension of the matrix (n)

400 00

Fig. 10 The time complexity of the MUL algorithm (blue line)
and performance prediction calculated by a Calc3 method (red
dots).

Using the measured times of MUL and SET and averag-
ing for n = 300,...,500 we obtain A = 0,22 and Iy = 0,24
nanoseconds. This means that an average cost of an arith-
metic operations IADD and IMUL is 9,7-times bigger than
an average cost of a simple instruction.

To estimate the execution time of the MUL algorithm we
use the following Calc3 method: given the factors Ig and
Iy, calculate the estimation of the time complexity of the
MUL algorithm by

Tyur(n) = (INST (n) — 2n%) x Is +2n° x I.

Using this estimation we find out that it much better fits
the MUL algorithm then the previous ones. Graph in Figure
shows the time complexity of MUL with blue line and the
Calc3 estimation with red dots. An average error of this
estimation (for n = 300, ...,500) is 2.3%.

For the next example of JVM indicators usage let us
consider the data-sorting problem. Here an algorithm aims
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to sort (in a prescribed order) the input array of num-
bers. It is well known that the fast sorting algorithms
can perform this task in &(nlogn) time. In our experi-
ment we used the so-called Wirth’s algorithm, which is
a special case of the QuickSort [9] sorting algorithms.
It uses one pivot (the first element of the input array)
to split the array into two sub-arrays (one with numbers
that are less than (or equal to) the pivot and the other
with numbers that are greater then (or equal to) the pivot)
and then it sorts these arrays recursively (see algorithm’s
code in Listings [I2). Running this algorithm in AL-
GATOR reveals that the Java bytecode of this algorithm
uses only 17 different instructions, namely, IFGT, ISUB,
ALOAD_O, INVOKEVIRTUAL, RETURN, ILOAD_3, ILOAD_2,
IF_ICMPGT, ISTORE, IASTORE, IF_ICMPGE, IF_ICMPLE,
GOTO, IINC, TALOAD, ALOAD_1, and ILOAD. It is interesting
(but according tho the nature of the Java virtual machine,
which is a stack oriented machine, not very surprising)
that a majority of work is done by only three instructions:
TALOAD, ALOAD_1, and ILOAD. The number of all instruc-
tions used by Wirth’s algorithm when sorting arrays of sizes
from 100000 to 500000 if presented Table 2} In this table
the number of the three LOAD instructions are presented
in the first line, the number of all instructions in the sec-
ond and the quotient between the first and the second value
in the third. For the test cases used in this experiment all
the quotients were about 0.60, which means that the three
LOAD instructions perform about 60% of all work. This
fact can also be observed in a graph in Figure [T1] where

" the number of each instruction used is depicted. We can
see that most instructions are used very rarely, some are
used moderately and a few of them very frequently. Us-
ing this observation and concrete numbers obtained with
the experiment one could derived a formula to predict the
execution time being dependant only on the number of the
three LOAD instructions used while executing the algo-
rithm (see Formula|l)).

void wirth(int[] a, int 1, int r) {
int left = 1, right = r;

if (right — left <= 0) return;

int pivot = al[l];

while (left <= right) {
while (af[left] < pivot) left++;
while (al[right] > pivot) right—;
if (left > right) break;
int tmp = alright];
alright—] = alleft];
alleft++] = tmp;

}

wirth(a, 1, right);

wirth(a, left, r);

}

Fig. 12 The Java code for the Wirth’s QuickSort algorithm

5. CONCLUSIONS

In this paper we described the ALGATOR — a system
for testing and analysing the algorithms. We showed how
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Java Bytecode Instruction Usage Counting with ALGator

N 100000 150000 200000 250000 300000 350000 400000 450000 500000
SUM: IALOAD +
ALOAD_1 + 17128368 | 26971644 | 36880192 | 46903030 | 55383357 | 66461302 | 77290334 | 88639256 98630370
ILOAD
ALL
instructions 28469965 | 44810573 | 61265870 | 77790644 | 91612964 | 110011072 | 128043459 | 146915394 | 163262811
SUM /ALL 0,6016294 |0,60190357 | 0,60196961 | 0,60293922 | 0,60453624 | 0,60413285 | 0,60362579 | 0,60333539 | 0,604120249
Table 2 Usage of Java bytecode instructions for Wirth’s algorithm.
-]
a
3
@ 60000000 -
s
B 50000000 - i
] Input size
E 40000000 - 100000
5 30000000 — & 150000
] e ——
é 20000000 - — 200000
2 10000000 - — = I 500000 250000
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& o . — " 300000 % 350000
&S e 400000
F LS 7 & 200000
RPN N R 450000
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A\ \?\J ?&ov \\IOV‘
Java bytecode instructions
Fig. 11 A statistics of the JVM instructions usage
to use the ALGATOR’s ability to count the usages of the should be concerned.
Java bytecode instructions. Using three algorithms (MUL,
ADD and SET) we presented different (more or less efficient) REFERENCES
methods to produce the performance prediction of the al-
gorithms based on the number of Java bytecode instruc- [1] T. DOBRAVEC. ALGator - an open
tion used. We showed that the “simple” instructions (e.g. source automatic algorithm evaluation system.

ILOAD_O, IALOAD, ISTORE, ...) are equally time con-
sumptive and that they on average take 0,0248 nano sec-
onds to execute (on our computer). We also showed that
arithmetic instructions (IADD and IMUL) are much more
time consumptive - on our computer these instructions take
0,24 nano seconds (which is almost 10 times slower than
the simple instructions). Using these information about
bytecode instructions and the formula for total bytecode in-
struction usages (which was also derived from the results of
ALGATOR’s execution) we presented a method for the ex-
ecution time prediction of the selected algorithm for matrix
multiplication. The results of this method were much better
then the results of a basic (naive) method which estimates
the time complexity with a simple cubic function.

The ALGATOR’s capability to count the Java bytecode
usages helps us to better understand the behaviour of the
algorithms. The test case presented in this paper is very
educative, but it is not general because of the nature of the
selected algorithm (the behaviour of the algorithm is totally
deterministic and does not dependent on the input data; the
algorithm always uses the same instructions regardless the
content of the input matrices). To prove a general usabil-
ity of the JVM indicators other problems and algorithms
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