
Acta Electrotechnica et Informatica, Vol. 19, No. 4, 2019, 29–34, DOI: 10.15546/aeei-2019-0027 29

ISSN 1335-8243 (print) © 2019 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

ON DATA HIDING USING DOMAIN SPECIFIC HIERARCHICAL DATA STRUCTURE
SVDAG FOR GEOMETRY REPRESENTATION OF VOXELIZED THREE-

DIMENSIONAL SCENES

Branislav MADOŠ, Zuzana BILANOVÁ
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics,

Technical University of Košice, Letná 9, 042 00 Košice, Slovak Republic, tel. +421 55 602 3023,
E-mails: {branislav.mados | zuzana.bilanova}@tuke.sk

ABSTRACT
The paper deals with the problematics of data hiding into domain specific hierarchical data structures which are dedicated to the

geometry of the voxelized three-dimensional scenes representation. Sparse Voxel Directed Acyclic Graph (SVDAG) as the suitable
representant of this category of data structures was chosen. Possibility of data hiding into this structure, based on the knowledge of its
construction on binary level was investigated and several data hiding methods were described and leveraged as the contribution of
this paper.

Keywords: data hiding, steganography, sparse voxel octrees, SVO, sparse voxel directed acyclic graph, SVDAG, symmetry-aware
sparse voxel directed acyclic graph, SSVDAG

1. INTRODUCTION

Computer security, cybersecurity or information
technology security is becoming more important nowadays
because of our rising reliance on information technology.
There are fields of IT security including intrusion detection
[1][2], honeypot technology [3][4], security using
computer vision [5] etc. Important part of the field includes
cryptography and not so often mentioned steganography.

Steganography is considered to be not only a science,
but also a craft of concealing ongoing communication by
hiding messages into unsuspicious cover documents called
stegomedia, such as texts, digital images, audio and video
sequences and other domain specific data structures. The
word steganography comprises the Greek words steganos
(στεγᾰνός) that means covered or concealed and the word
graphein (γραφή) that means writing. Steganography as the
word has been used in 1499 for the first time by Johannes
Trithemius in his work Steganographia, but the first use of
steganography as the method itself can be dated back to the
440 BC, when the use of steganographic procedures have
been mentioned by Herodotus in his work Histories.
Interesting overview of the problematics of steganography
can be found in [6][7].

Steganography is evolving not only through centuries
but lieterally through ages and different techniques have
been proposed using rich repertoire of various stegomedia.
It is possible to use one of basic classifications of
steganography, when pre-computer and computer era of
steganography can be established. Computers are not only
simplifying and accelerating use of steganographic
techniques, but brings also possibility of computer specific
algorithms and stegomedia that does not have opportunity
to exist without computers. Steganography is constantly
seeking new possibilities how to hide information in those
innovative kinds of computer related stegomedia and tries
to find computer specific algorithms of data hiding. To
name only a few examples, with the rise of computers
possibility of the use of secondary storage systems, their
changeable media and file systems were examined for the
possibility to hide information based on the hardware and

software features [8][9][10]. Another way how to hide
information which is connected to the use of computers is
the possibility to hide information into pictures stored in
JPEG file format [11][12]. Specific algorithms were
created in relation to rise of smartphones and their
operating systems including iOS and Android.

That is why we decided to concentrate our attention to
the computers related domain specific data structures
which are dedicated to the voxelized three-dimensional
scenes geometry representation, that are including Sparse
Voxel Octrees (SVO), Sparse Voxel Directed Acyclic
Graphs (SVDAG) and Symmetry-Aware Sparse Voxel
Directed Acyclic Graphs (SSVDAG). The aim of the paper
is to investigate possibilities of the data hiding into Sparse
Voxel Directed Acyclic Graph (SVDAG) data structure
and leverage their usefulness and capacity of the SVDAG
format for data hiding.

Contribution of the paper is in Discussion of the several
methods of data hiding based on the leveraging of the
features of binary representation of Sparse Voxel Directed
Acyclic Graph (SVDAG) data structure nodes.

The structure of the paper is as follows.
Section 2 of the paper summarizes related work in the

field of hierarchical data structures used for geometry
representation of voxelized multi-dimensional data,
including 2D and 3D grids of pixels resp. voxels.

Section 3 of the paper introduces construction of the
Sparse Voxel Directed Acyclic Graph (SSVDAG) and
describes nodes construction of this data structure on the
binary level.

Section 4 of the paper discusses possibilities of data
hiding into SVDAG data structure based on the knowledge
about binary representation of the data structure described
in the section 2 of the paper and leverages advantages and
disadvantages of mentioned data hiding methods from the
capacity and usefulness point of view.

Section 5 of the paper summarizes conclusions based on
previous sections of the paper.

30 On Data Hiding Using Domain Specific Hierarchical Data Structure SVDAG …..

ISSN 1335-8243 (print) © 2019 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

2. RELATED WORKS

Multi-dimensional data linearization. For the purpose of
linearization of multi-dimensional data Morton order is
often used, because of many advantages. Morton order is
known also as the Z-order or Morton Code [13] because it
uses Z-Curve, it means curve in the shape of the character
Z, as the space-filling curve, as it is depicted on the Figure
1 for two-dimensional space.

Fig. 1 Morton order, using z-curve as the tool for linearization of
multidimensional grids of data. Example shows two-dimensional data

linearized a) to the first level and b) to the second level.

Voxelization. is the process in which in most cases regular
three-dimensional grid of voxels is created from different
kinds of data sources. In [14] there is out-of-core algorithm
described which consists of two steps. First step is
represented by the voxelization process in which set of
voxels is created from the triangle mesh as the intermediate
product. In the second step of the algorithm Sparse Voxel
Octree (SVO) data structure is created from the set of
voxels.

Two-dimensional hierarchical representation.
Possibility of two-dimensional picture representation using
quadtrees along with the use of Common Subtree Merging
was introduced in [15]. Two-Dimensional Template-based
encoding (2DTE) along with the use of common subtrees
merging was introduced in [16] as the solution for
cartographical information representation. Extension of
this approach to 3D data was introduced in [17].

Three-dimensional hierarchical representation. of
voxelized data is evolving over last decade from Sparse
Voxel Octrees (SVO) through the Efficient Sparse Voxel
Octrees (referenced in literature as the ESVO) that were
introduced in 2010 in [18]. In 2013 Sparse Voxel Directed
Acyclic Graphs (SVDAG) were introduced in [19]. It
transforms octrees into directed acyclic graph, because it
allows common subtrees merge. Another advantage is in 32
bit pointers to the child nodes. There are pointers with the
0 and 32-bit length. Evolution of this data structure into
Symmetry-aware Sparse Voxel Directed Acyclic Graph
was introduced in [20]. Pointers to the child nodes are 0, 16
and 32-bit long and there is possibility to common subtree
merge not only in the case of absolute match of two or more
subtrees, but also if subtrees are identical when symmetry
transformation is applied in one or more axes. Leaf nodes
are compacted into 4ଷ grids of voxels, because it creates
chance for compaction of the data representation in
comparison of the use of pointers.

3. SVDAG DATA STRUCTURE

Sparse Voxel Directed Acyclic Graph (SVDAG) is data
structure that unlike previous data structure called Sparse
Voxel Octree (SVO) brings new features:

 Pointers to the child nodes, that are 32-bit long
 Possibility of common subtrees merge
 32 bit aligned components of data structure node

Pointers bring possibility of quick and easy traversing
of the data structure when it is loaded into operating
memory of the computer or memory of the graphics card.
Pointers are 32-bit long and represent address of particular
node in whole addressing space of the data structure.

SVDAG is directed acyclic graph, because it allows
common subtree merge, when only one copy of the subtree
is fully represented and this subtree is then multiple times
referenced using pointers that are referencing the same
address in addressing space of the data structure (are
referencing the same node, that is root of the common
subtree).

a)

b)

c)

Fig. 2 Example of Sparse Voxel Directed Acyclic Graph construction
for voxelized data (2D for simplification) when a) representation of
active pixels, which are red b) representation in the form of directed
acyclic graph and c) example of binary representation of nodes with

CHild Node Addresses (CHNA). Pixels are in Morton order.

Acta Electrotechnica et Informatica, Vol. 19, No. 4, 2019 31

ISSN 1335-8243 (print) © 2019 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

Advantage of common subtree merge is the compaction
of the data structure, that can be considered as the lossless
data compression. Very important in that case is the
decompression overhead in time of the data structure
traversing, because data structure is continually and
repeatedly decompressed, when it is used for data
visualization or other possible kind of processing,
especially in interactive or real time mode. Advantage is
that there is no decompression overhead of common
subtree merge in comparison to SVO data structure which
is enriched with pointers and not using common subtree
merge. Example of SVDAG can be seen on Figure 2.

In the same way as the Sparse Voxel Octrees (SVO)
data structure, SVDAG decomposes space into 8
suboctants and therefore each node of the SVDAG
comprises 8-bit child node mask which includes one bit per
child node. When this bit is set to 0, there is no child node,
because suboctant comprises no active voxels and there is
no need of further decomposition. There is no pointer to the
child node. When this bit is set to 1, suboctant comprises at
least one active voxel and further decomposition of the
suboctant is needed, and there is child node present in the
data structure and also pointer which references this child
node. There is 24 bit long unused space along with the child
node mask, because there was need for 32-bit alignment of
the mask in the data structure. This unused space can be
considered as the disadvantage of the data structure along
with the length of child pointers that can be considered as
unnecessary long when only smaller volumes are stored.

Number of child nodes is from the range of ൏ 1; 8
and each child node is represented by its own child node
pointer. Number of child nodes is therefore variable in the
same range ൏ 1; 8 . Mask with unused space is 32-bit
long and each pointer is 32-bit long. Each node comprises
mask and at least one child node pointer with maximum of
8 child node pointers. Length of the node is therefore from
the range of ൏ 64; 288 bits (൏ 8; 36 Bytes). Leaf
nodes do not need any child node pointers and it is possible
to represent voxels directly in the child node mask of the
node, so there is possibility to use 32-bits for this node.

Fig. 3 Relative size of unused space in the node in comparison to the
overall size of binary representation of the node with various number of
child node pointers, when leaf nodes of the structure comprise no child

node pointers and non-leaf nodes comprise number of child node
pointers from the range of <1; 8> .

4. DATA HIDING METHODS

The natural requirement for data hiding into SVDAG data
structure is not to change represented geometry of the three
dimensional scene. All discussed methods are in
accordance with this requirement.

Unused space. First possibility how to hide information
into SVDAG data structure is obvious possibility to fill
information into unused space related to the child node
mask. There is 24 bits (3 Bytes) of unused space in each
node of the data structure. In comparison to the overall
length of the binary representation of the node, which can
be from the range of ൏ 64; 288 bits per node, it is
possible to use relatively big part of the space for data
hiding. When this unused space represents from 8.33%
when all 8 child pointers are used to the 37,5% when only
one child pointer is used. In the case of leaf nodes, unused
space represents even bigger portion – 75% of the binary
representation of the leaf node (Figure 3). Relatively big
capacity of this unused space can be considered as the
advantage of this possibility of hiding information,
however it is extremely easy to find out that this space if
filled with information, especially in case of extensive use
of the disposable capacity of data structure.

Extra child node pointers. Number of child pointers for
particular node can be found by analysis of child node mask
of the node and this number can be from the range of <1;
8> for non-leaf nodes. It is not possible to introduce extra
child node pointer prior to the last real child node pointer
however there is possibility to concatenate extra child node
pointer after last of regular one. This extra child node
pointer does not have its particular bit in child node mask.
Not to exceed the natural number of child node pointers of
regular node of the data structure, there is possibility to
concatenate from 0 to 7 extra child node pointers, which
brings possibility to store from 0 to 224 bits of information
(0 to 28 Bytes) which is from 0% to 77,78% of the normal
child node when full capacity of extra child pointers is used
(Figure 4).

Fig. 4 Size of space for data hiding when extra child node pointers are
introduced into the non-leaf node of the data structure and full capacity
of extra child node pointers is used. Number of extra child nodes can

vary from the range of <0; 7>.

32 On Data Hiding Using Domain Specific Hierarchical Data Structure SVDAG …..

ISSN 1335-8243 (print) © 2019 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

It is possible to do analysis of the number of child
pointers indicated in all child node masks of the data
structure by counting of bit 1 occurrences and then count
number of child node pointers in all nodes and identify
discrepancies between assumed and real number of child
node pointers.

Extra nodes or subDAGs. There is possibility to introduce
extra nodes or even whole subDAGs which are not
connected to the main DAG and therefore the extra nodes
or subDAGs are not reachable. Extra nodes or subDAGs
are not altering visual representation of data stored in data
structure because they are not traversed in time of data
structure use. Those extra nodes or subDAGs can resemble
real nodes or subDAGs of the data structure and can
implement all possibilities how to hide data into SVDAG.
Extra nodes can be used not only for data hiding, but also
for altering of statistical information about overall data
structure, because there can be discrepancy, when for
example there are more child pointers indicated in child
node mask then are represented in the node. It can
compensate extra child node pointers as it was depicted in
previous method. There is strikingly big space for extra
subDAGs amounting hundreds of MB because of the large
addressing space that is available in SVDAG.

It is possible to do analysis of the assumed number of
nodes in the data structure and their size and compare it to
the real number of nodes and their size to find
discrepancies.

Extra data. part of the file can be used for extra data, when
structure of the data does not imitate structure of nodes or
subDAGs. It is not altering visual representation of data
stored in the data structure because extra data are not
traversed in time of data structure use.

Extra free space. It is assumed that nodes of data structure
are concatenated to each other to fill addressing space as
economically as it is possible. However, there is possibility
to leave free space between nodes where no information is
stored. Size of the free space (32-bit aligned) and location
of it can encode information even when it is regulary filled
with strings of 0 bits and therefore can be used for data
hiding and different encoding schemas can be proposed.

Extra data and extra free space can be identified,
because as in the previous method of data hiding, it is
possible to do analysis of the assumed number of nodes in
the data structure and their size and compare it to the real
size of the data structure to find discrepancies.

Common subtree merge. There is possibility to build
different DAGs that are representing the same visual
information of the 3D scene in case of possibility of
common subtree merge, because it is possible to do
common subtree merge or ignore this possibility
independently for each pair of common subtrees. It allows
different DAGs with the same geometry of the scene
information. Different encoding methods can be suggested
based on this possibility. Analysis can be done if all
possible common subtree merges were performed, it
means, if the SVDAG data structure is as compact as

possible and in case there is discrepancy, it can indicate use
of data hiding method.

Relative positions of nodes. There is possibility to do
permutations of child node addresses in the addressing
space of the data structure and their relative positions along
with some features of nodes can be used for different
encoding schemas for hiding information, for example:

 Affiliation of child nodes to the same/different parent
node. (For example there is possibility to suggest
encoding, when address of the first child node must be
lower than second child node to encode bit 0 and
higher than second child node to encode bit 1) for child
nodes of the same parent node.

 Affiliation of nodes to the same/different level of
nodes in data structure. For example, when address of
parent node is lover than child node it encodes bit 0
and opposite, when child node address is lower than
parent node address it encodes bit 1.

 Affiliation of child nodes to the same/different
subDAGs.

Absolute position of nodes. There is possibility to use
absolute value of the node address in addressing space
along with features of node to encode information, when
for example particular bit of the node address (for example
third least significant bit) for node that has even number of
child nodes means encoding of bit 0 and odd number of
child nodes means encoding of bit 1.

Disadvantage of relative and absolute position of nodes
data hiding methods is in relatively small capacity, when
encoding methods can hide one bit of information per node
with the size from the range of 32 bits to 288 bits. In that
case capacity of information encoding vary from 0.347% to
the 3.125% of the node size in bits.

In the case of relative and absolute positions of nodes
analysis can be made in which irregularities in addressing
of nodes can be analysed and identification of those
irregularities can be evaluated as the sign of the use of data
hiding.

5. CONCLUSIONS

The paper deals with the problematics of data hiding
using steganography in hierarchical data structures that are
used in the field of geometry representation of voxelized
three dimensional scenes. From the family of hierarchical
data structures, that includes Sparse Voxel Octrees (SVO),
Sparse Voxel Directed Acyclic Graph (SVDAG) and
Symmetry-Aware Sparse Voxel Directed Acyclic Graph
(SSVDAG) our attention was focused on SVDAG data
structure. In the first part of the paper SVDAG data
structure construction was described and then several
methods of data hiding were discussed along with the
discussion about usability and capacity of the stegomedia
in SVDAG data format in accordance to the particular data
hiding methods.

Acta Electrotechnica et Informatica, Vol. 19, No. 4, 2019 33

ISSN 1335-8243 (print) © 2019 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

In the future research we will focus our attention to the
most sophisticated hierarchical data structure in this field –
Symmetry-aware Sparse Voxel Directed Acyclic Graph
(SSVDAG), which construction is more complex and it
allows even more complex and advantageous
steganography approaches in comparison to the SVDAG
data structure.

ACKNOWLEDGMENTS

This research was supported by the Slovak Research
and Development Agency, project number APVV-18-0214
and by KEGA Agency of the Ministry of Education,
Science, Research and Sport of the Slovak Republic under
Grant No. 003TUKE-4/2017 Implementation of Modern
Methods and Education Forms in the Area of Security of
Information and Communication Technologies towards
Requirements of Labor Market.

REFERENCES

[1] VOKOROKOS, L. ‒ BALÁŽ, A. ‒ CHOVANEC,
M.: Distributed detection system of security
intrusions based on partially ordered events and
patterns. In: Towards Intelligent Engineering and
Information Technology. Volume 243, Studies in
Computational Intelligence. - Heidelberg: Springer
Berlin, 2009 P. 389-403. - ISBN 9783642037368.

[2] VOKOROKOS, L. ‒ BALÁŽ, A. ‒ CHOVANEC,
M.: Intrusion detection system using self-organizing
map - 2006. In: Acta Electrotechnica et Informatica.
Roč. 6, č. 1 (2006), s. 81-86. - ISSN 1335-824.

[3] CHOVANCOVÁ, E. ‒ ÁDÁM, N. ‒ BALÁŽ, A. ‒
PIETRIKOVÁ, E. ‒ FECIĽAK, P. ‒ ŠIMOŇÁK, S. ‒
CHOVANEC, M.: Securing distributed computer
systems using an advanced sophisticated hybrid
honeypot technology - 2017. In: Computing and
Informatics. Roč. 36, č. 1 (2017), s. 113-139. - ISSN
1335-9150.

[4] CHOVANCOVÁ, E. ‒ HURTUK, J.: Highly
Interactive Hybrid Honeypot - 2019. In: Applied
Computational Intelligence and Informatics. -
Timişoara (Rumunsko): Universitatea Politehnica
Timisoara s. 33-37 [online]. - ISBN 978-1-7281-
0685-4.

[5] VOKOROKOS, L. ‒ CHOVANCOVÁ, E. ‒
RADUŠOVSKÝ, J. ‒ CHOVANEC, M.: A Multicore
Architecture Focused on Accelerating Computer
Vision Computations - 2013. In: Acta Polytechnica
Hungarica. Vol. 10, no. 5 (2013), p. 29-43. - ISSN
1785-8860.

[6] PETITCOLAS, F. A. P. ‒ ANDERSON, R. J. ‒
KUHN, M. G.: Information Hiding – A Survey.
Proceedings of the IEEE, Vol. 87, 1999, No. 7, pp.
1062–1078, doi:10.1109/5.771065.

[7] ZIELIŃSKA, E. ‒ MAZURCZYK, W. ‒
SZCZYPIORSKI, K.: Trends in Steganography.
Communications of the ACM, Vol. 57, 2014, No. 3,
pp. 86–95, doi:10.1145/2566590.2566610.

[8] VOKOROKOS, L. ‒ MADOŠ, B. ‒ ÁDÁM, N. ‒
BALÁŽ, A. ‒ PORUBÄN, J. ‒ CHOVANCOVÁ, E.:
"Multi-Carrier Steganographic Algorithm Using File
Fragmentation of FAT FS" - 2019. In: Computing and
Informatics: Computers and Artificial Intelligence. -
Bratislava (Slovensko), Ústav informatiky Roč. 38, č.
2 (2019), s. 343-366 [print]. - ISSN 1335-9150.

[9] AYCOCK, J. ‒ DE CASTRO, D. M. N.: Permutation
Steganography in FAT Filesys-tems. In: Shi, Y.
(Ed.): Transactions on Data Hiding and Multimedia
Security X.Springer, Berlin, Heidelberg, Lecture
Notes in Computer Science, Vol. 8948, 2015, pp.
92–105, doi: 10.1007/978-3-662-46739-86.

[10] LIU, S. F. ‒ PEI, S. ‒ Huang, X.Y. ‒ TIAN, L.: File
Hiding Based on FAT File System. Proceedings of
the 2009 IEEE International Symposium on IT
in Medicine and Education, Jinan, China, Vol. 1,
2009, pp. 1198–1201,
doi:10.1109/ITIME.2009.5236280.

[11] JÓKAY, M. ‒ KOŠDY, M.: Steganographic File
System Based on JPEG Files. Tatra Mountains
Mathematical Publications, Vol. 57, 2013, No. 1, pp.
65–83, doi: 10.2478/tmmp-2013-0036. ISSN: 1210-
3195.

[12] JÓKAY, M. ‒ KOŠDY, M. ‒ ČAVOJ, M.:
Steganographic File System Embedded in static
Images. Central European Conference on Cryptology
2013, Telč, Czech Republic, 2013, pp. 76.

[13] MORTON, G. M. 1966.: A Computer Oriented
Geodetic Data Base and a New Technique in File
Sequencing, Research Report. International Business
Machines Corporation (IBM), Ottawa, Canada, 20.

[14] BAERT, J. ‒ LAGAE, A. ‒ DUTRÉ, P.: “Out-of-core
construction of sparse voxel octrees”. In Proceedings
of the 5th High-Performance Graphics Conference.
HPG ’13. ACM, New York, NY, USA, 27–32.

[15] WEBBER, R.E. ‒ DILLENCOURT, M.B.:
“Compressing quadtrees via common subtree
merging”. Pattern Recognition Letters 9 (1989), April
1989, pp. 193–200.

[16] KER-CHANG CHANG, H. ‒ SHING-HUA, L. ‒
CHENG-KUAN, G.: “Two dimensional template-
based encoding for linear quadtree representation”

[17] PARKER, E. ‒ UDESHI, T.: “Exploiting self-
similarity in geometry for voxel based solid
modeling”. In Proceedings of the Eighth ACM
Symposium on Solid Modeling and Applications. SM
’03. ACM, New York, NY, USA, 157–166.

[18] LAINE, S. ‒ KARRAS, T.: “Efficient sparse voxel
octrees”. In Proceedings of ACM SIGGRAPH 2010
Symposium on Interactive 3D Graphics and Games.
ACM Press, New York, NY, USA, 1–9.

[19] KAMPE, V. ‒ SINTORIN, E. ‒ ASSARSON, U.:
“High resolution sparse voxel DAGs”. ACM Trans.
Graph. 32, 4, Article 101 (July 2013), 13 pages. DOI:
https://doi.org/10.1145/2461912.246 2024.

34 On Data Hiding Using Domain Specific Hierarchical Data Structure SVDAG …..

ISSN 1335-8243 (print) © 2019 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

[20] VILLANUEVA, A. J. ‒ MARTON, F. ‒ GOBETTI,
E.: “SSVDAGs: symmetry-aware sparse voxel
DAGs”. In Proceedings of the 20th ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games
(I3D '16). ACM, New York, NY, USA, 7-14. DOI:
https://doi.org/10.1145/2856400.2856420.

Received December 5, 2019, accepted December 17, 2019

BIOGRAPHIES

Branislav Madoš (Ing., PhD.) was born on 20th of May
1976 in Trebišov, Slovakia. In 2006 he graduated (Ing.) at
the Department of Computers and Informatics at the
Faculty of Electrical Engineering and Informatics of the
Technical University of Košice. He defended his PhD. in
the field of Computers and computer systems in 2009; his
thesis title was ”Specialized architecture of data flow
computer”. Since 2010 he is working as an Assistant

Professor at the Department of Computers and Informatics.
His scientific research is focused on the parallel computer
architectures and architectures of computers with data
driven computational model and computer security using
cryptographic and steganographic methods.

Zuzana Bilanová (Ing.) was born on 13th of July 1992 in
Košice, Slovakia. In 2015 she graduated (Ing.) at the
Department of Computers and Informatics at the Faculty of
Electrical Engineering and Informatics of the Technical
University of Košice. Since 2015 she is PhD. student at the
Department of Computers and Informatics at the Faculty of
Electrical Engineering and Informatics of the Technical
University of Košice. Her main scientific orientations are
focused on creating new approaches in logical analysis of
natural language, non-classical logical systems in +89
computer science, and resource-oriented logic
programming. Her secondary research areas are
educational technologies for the effective implementation
of engineering education concentrating on project and team
based teaching.

